11.已知x>0,y>0,且x+8y-xy=0.
(1)當x,y分別為何值時,xy取得最小值?
(2)當x,y分別為何值時,x+y取得最小值?

分析 (1)直接利用基本不等式,求出x,y分別為何值時,xy取得最小值;
(2)變形,利用“1”的代換,即可求出當x,y分別為何值時,x+y取得最小值

解答 解:(1)∵x>0,y>0,且x+8y-xy=0,
∴xy=x+8y≥4$\sqrt{2}xy$,當且僅當x=8y,即x=16,y=2時取等號,
∴xy≥32.
∴xy的最小值為8.
(2)∵x+8y-xy=0,∴$\frac{8}{x}$+$\frac{1}{y}$=1,
∴x+y=(x+y)($\frac{8}{x}$+$\frac{1}{y}$)=9+$\frac{x}{y}$+$\frac{8y}{x}$≥9+4$\sqrt{2}$,當且僅當$\frac{x}{y}$=$\frac{8y}{x}$,即y=1+2$\sqrt{2}$,x=8+2$\sqrt{2}$時取等.
因此x+y的最小值為9+4$\sqrt{2}$.

點評 本題考查利用基本不等式求最值,考查學生變形能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.在平面直角坐標系xOy中,以原點O為極點,x軸正半軸為極軸建立極坐標系,射線1:θ=$\frac{π}{3}$(ρ≥0)與曲線C:ρ=2sinθ交于點A(異于點O).
(I)求點A的極坐標;
(II)直線1′:$\left\{\begin{array}{l}{x=\sqrt{3}t}\\{y=-t}\end{array}\right.$(t為參數(shù))與曲線C交于點B(異于點O),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.為求使不等式1+2+3+…+n<60成立的最大正整數(shù)n,設(shè)計了如圖所示的算法,則圖中“-----”處應(yīng)填入i-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知f(x)是定義在R上的偶函數(shù),且當x<0時,$f(x)=2_{\;}^x$,則f(log49)的值為( 。
A.-3B.$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.用更相減損術(shù)求兩數(shù)282和470的最大公約數(shù),并用輾轉(zhuǎn)相除法檢驗?zāi)愕慕Y(jié)果.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)已知復(fù)數(shù)z=3+ai(a∈R)且|z|<4,求實數(shù)a的取值范圍.
(2)記復(fù)數(shù)z的共軛復(fù)數(shù)記作$\overline z$,已知$({1+2i})\overline z=4+3i$,求z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若隨機安排甲、乙、丙三人在3天節(jié)日中值班,每人值班1天,則甲與丙恰有一個在第一天值班的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)$f(x)=cos(\frac{2π}{3}x)+(a-1)sin(\frac{π}{3}x)+a,g(x)={2^x}-{x^2}$,若f[g(x)]≤0對x∈[0,1]恒成立,則實數(shù)a的取值范圍是( 。
A.$(-∞,\sqrt{3}-1]$B.(-∞,0]C.[0,$\sqrt{3}$-1]D.$(-∞,1-\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.給出下列兩個命題:
命題p::若在邊長為1的正方形ABCD內(nèi)任取一點M,則|MA|≤1的概率為$\frac{π}{4}$.
命題q:若從一只只有3枚一元硬幣和2枚五角硬幣的儲錢罐內(nèi)隨機取出2枚硬幣(假設(shè)每枚硬幣被抽到都是等可能的),則總共取到2圓錢的概率為$\frac{1}{3}$.那么,下列命題中為真命題的是(  )
A.p∧qB.?pC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

同步練習冊答案