分析 (1)求出函數(shù)的導(dǎo)數(shù),計算f(1),f′(1)的值,求出切線方程即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可.
解答 解:(1)∵$f'(x)=-2x+\frac{2}{x}=-\frac{2(x+1)(x-1)}{x}$
∴f'(1)=0,所求的切線斜率為0,又切點為(1,-1)
故所求切線方程為y=-1…(5分)
(2)∵$f'(x)=-\frac{2(x+1)(x-1)}{x}$且x>0
令f'(x)>0得0<x<1,令f'(x)<0得x>1.
從而函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞)
顯然函數(shù)只有極大值,且極大值為f(1)=-1…(12分)
點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及切線方程問題,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3件都是正品 | B. | 至少有1件次品 | C. | 3件都是次品 | D. | 至少有1件正品 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | -4 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {1,2} | C. | {2,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3或27 | B. | 3 | C. | 27 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3+\sqrt{3}}}{2}$ | B. | $3+\sqrt{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com