11.設(shè)a,b,c∈R,且a>b,則( 。
A.a2>b2B.a3>b3C.$\frac{1}{a}$$<\frac{1}$D.ac>bc

分析 根據(jù)題意,由基本不等式的性質(zhì)依次分析選項,即可得答案.

解答 解:根據(jù)題意,依次分析選項:
對于A、當(dāng)a=1,b=-2時,有a2<b2,故A錯誤;
對于B、由不等式的性質(zhì)可得:若且a>b,則a3>b3,B正確;
對于C、當(dāng)a=1,b=-2時,$\frac{1}{a}$>$\frac{1}$,故B錯誤;
對于D、當(dāng)c≤0時,ac>bc不成立,故D錯誤;
故選:B.

點評 本題考查不等式的性質(zhì),關(guān)鍵要掌握不等式的性質(zhì)以及使用條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)、g(x)都是定義在R上的函數(shù),g(x)≠0,f'(x)g(x)<f(x)g'(x),f(x)=axg(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,在有窮數(shù)列$\left\{{\frac{f(n)}{g(n)}}\right\}$(n=1,2,…,10)中,任意取前k項相加,則前k項和不小于$\frac{63}{64}$的k的取值范圍是( 。
A.[6,10]且k∈N*B.(6,10]且k∈N*C.[5,10]且k∈N*D.[1,6]且k∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y+1≥0}\\{2x+y-1≤0}\end{array}\right.$,若直線y=k(x+1)把不等式組表示的平面區(qū)域分成上、下兩部分的面積比為1:2,則k=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1中,A1B⊥平面ABC,且AB⊥AC.
(1)求證:AC⊥BB1;
(2)若AB=AC=A1B=2,M為B1C1的中點,求二面角M-AB-A1平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(x2-ax+b)ex(a,b為常數(shù),e是自然對數(shù)的底).
(1)當(dāng)a=-1,b=1時,求f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=a+1時,函數(shù)f(x)有兩個極值點x1,x2(x1<x2).
①求實數(shù)a的取值范圍;
②若a>0且mx1e${\;}^{{x}_{2}}$-f(x2)>0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某幾何體的正視圖和俯視圖都是矩形,側(cè)視圖是平行四邊形,則該幾何體的體積為( 。
A.3$\sqrt{3}$B.6$\sqrt{3}$C.9$\sqrt{3}$D.18$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({2,-3})$,向量$\overrightarrow c$滿足$({\overrightarrow c+\overrightarrow a})∥\overrightarrow b,\overrightarrow c⊥({\overrightarrow a+\overrightarrow b})$,則$\overrightarrow c$用基底$\overrightarrow a,\overrightarrow b$的線性表示為$\frac{1}{9}\overrightarrow-\overrightarrow{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cos(\frac{π}{2}-β),sin(\frac{π}{2}-β))$,若$\overrightarrow a•\overrightarrow b=3sin(α-β)$,則$\frac{tanα}{tanβ}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.袋中有大小完全相同的2個白球和3個黃球,逐個不放回地摸出兩球,設(shè)“第一次摸得白球”為事件A,“摸得的兩球同色”為事件B,則P(B|A)為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{2}{5}$

查看答案和解析>>

同步練習(xí)冊答案