15.某高中體育小組共有男生24人,其50m跑成績記作ai(i=1,2,…,24),若成績小于6.8s為達(dá)標(biāo),則如圖所示的程序框圖的功能是(  )
A.求24名男生的達(dá)標(biāo)率B.求24名男生的不達(dá)標(biāo)率
C.求24名男生的達(dá)標(biāo)人數(shù)D.求24名男生的不達(dá)標(biāo)人數(shù)

分析 由題意,從成績中搜索出大于6.8s的成績,計算24名中不達(dá)標(biāo)率.

解答 解:由題意可知,k記錄的是時間超過6.8s的人數(shù),而i記錄是的參與測試的人數(shù),因此$\frac{k}{i}$表示不達(dá)標(biāo)率;
故選B.

點(diǎn)評 本題考查程序框圖的理解以及算法功能的描述.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.把函數(shù)f(x)=2sin(x+2φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{2}$個單位長度之后,所得圖象關(guān)于直線$x=\frac{π}{4}$對稱,且f(0)<f($\frac{π}{2}$-φ),則φ=( 。
A.$\frac{π}{8}$B.$\frac{3π}{8}$C.$-\frac{π}{8}$D.$-\frac{3π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,A1,A2為橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$長軸的左、右端點(diǎn),O為坐標(biāo)原點(diǎn),S,Q,T為橢圓上不同于A1,A2的三點(diǎn),直線QA1,QA2,OS,OT圍成一個平行四邊形OPQR,則|OS|2+|OT|2=( 。
A.14B.12C.9D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.正方形ABCD與等邊三角形BCE有公共邊BC,若∠ABE=120°,則BE與平面ABCD所成角的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系xOy中,橢圓Ω:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,直線l:y=2上的點(diǎn)和橢圓Ω上的點(diǎn)的距離的最小值為1.
(Ⅰ) 求橢圓Ω的方程;
(Ⅱ) 已知橢圓Ω的上頂點(diǎn)為A,點(diǎn)B,C是Ω上的不同于A的兩點(diǎn),且點(diǎn)B,C關(guān)于原點(diǎn)對稱,直線AB,AC分別交直線l于點(diǎn)E,F(xiàn).記直線AC與AB的斜率分別為k1,k2
①求證:k1•k2為定值;
②求△CEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.《九章算術(shù)》是我國第一部數(shù)學(xué)專著,下有源自其中的一個問題:“今有金箠(chuí),長五尺,斬本一尺,重四斤,斬末一尺,重二斤.問金箠重幾何?”其意思為:“今有金杖(粗細(xì)均勻變化)長5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.問金杖重多少?”則答案是15斤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2-2x-3<0},B={x||x|<2},則A∩B=(  )
A.{x|-2<x<2}B.{x|-2<x<3}C.{x|-1<x<3}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=sinωx(ω>0),若函數(shù)y=f(x+a)(a>0)的部分圖象如圖所示,則ω=2,a的最小值是$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦距為$4\sqrt{2}$,短半軸長為2,過點(diǎn)P(-2,1)斜率為1的直線l與橢圓C交于A,B點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案