A. | x=-$\frac{π}{3}$ | B. | x=$\frac{2π}{3}$ | C. | x=$\frac{π}{6}$ | D. | x=$\frac{5π}{6}$ |
分析 依題意,由f($\frac{π}{3}$)=sin$\frac{π}{3}$-λcos$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$λ=0可求得λ=$\sqrt{3}$;于是可得g(x)=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,利用正弦函數(shù)的對(duì)稱性得2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$(k∈Z),對(duì)k賦值1即可得答案.
解答 解:∵函數(shù)f(x)=sinx-λcosx的圖象的一個(gè)對(duì)稱中心是($\frac{π}{3}$,0),
∴f($\frac{π}{3}$)=sin$\frac{π}{3}$-λcos$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$λ=0,
解得:λ=$\sqrt{3}$;
∴g(x)=λsinxcosx+sin2x=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1-cos2x}{2}$=sin(2x-$\frac{π}{6}$)+$\frac{1}{2}$,
由2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$(k∈Z)得:x=$\frac{kπ}{2}$+$\frac{π}{3}$(k∈Z),
當(dāng)k=1時(shí),x=$\frac{5π}{6}$,
故選:D.
點(diǎn)評(píng) 本題考查三角函數(shù)中的恒等變換及其應(yīng)用,考查正弦函數(shù)的對(duì)稱性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,+∞) | B. | [0,+∞) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ${d_n}=\frac{{{c_1}+{c_2}+…+{c_n}}}{n}$ | B. | ${d_n}=\frac{{{c_1}•{c_2}{•_{\;}}{…_{\;}}•{c_n}}}{n}$ | ||
C. | ${d_n}=\root{n}{{{c_1}•{c_2}{•_{\;}}{…_{\;}}•{c_n}}}$ | D. | ${d_n}=\root{n}{{\frac{{{c_1}^n•{c_2}^n{•_{\;}}{…_{\;}}•{c_n}^n}}{n}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com