3.已知集合A={x|2x-1>1},B={x|x(x-2)<0},則A∩B={x|1<x<2}..

分析 解指數(shù)不等式求得A,解一元二次不等式求得B,再根據(jù)兩個集合的交集的定義求得A∩B.

解答 解:由2x-1>1=20,解得x>1,即A={x|x>1},
B={x|x(x-2)<0}={x|0<x<2},
則A∩B={x|1<x<2},
故答案為:{x|1<x<2}.

點評 本題主要考查指數(shù)不等式的解法,一元二次不等式的解法,兩個集合的交集的定義和求法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一點,且$\overrightarrow{AB}$•$\overrightarrow{CD}$=5,則|$\overrightarrow{BD}$|等于( 。
A.2B.4C.6D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{x}^{2}}{2e}$-ax.
(1)若a=$\frac{1}{2}$,求曲線y=f(x)在(e,f(e))處的切線方程;
(2)若關于x的不等式f(x)≥ax+b≥lnx-ax在(0,+∞)上恒成立,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知矩陣A=$[\begin{array}{l}{a}&{3}\\{2}&hqodhmk\end{array}]$,若A$[\begin{array}{l}{1}\\{2}\end{array}]$=$[\begin{array}{l}{8}\\{4}\end{array}]$,求矩陣A的特征值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知兩個集合A,B,滿足B⊆A.若對任意的x∈A,存在ai,aj∈B(i≠j),使得x=λ1ai2aj(λ1,λ2∈{-1,0,1}),則稱B為A的一個基集.若A={1,2,3,4,5,6,7,8,9,10},則其基集B元素個數(shù)的最小值是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某中學隨機選取了40名男生,將他們的身高作為樣本進行統(tǒng)計,得到如圖所示的頻率分布直方圖.觀察圖中數(shù)據(jù),完成下列問題.
(Ⅰ)求a的值及樣本中男生身高在[185,195](單位:cm)的人數(shù);
(Ⅱ)假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,通過樣本估計該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在[145,155)和[185,195](單位:cm)內的男生中任選兩人,求這兩人的身高都不低于185cm的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a,b∈R,i為虛數(shù)單位,若a+3i與2+bi在復平面內對應的點關于原點對稱,則$\frac{a+bi}{1+i}$等于( 。
A.-$\frac{5+i}{2}$B.$\frac{-5+i}{2}$C.$\frac{1+5i}{2}$D.$\frac{1-5i}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左,右焦點分別為F1,F(xiàn)2,過F1任作一條與兩坐標軸都不垂直的直線,與C交于A,B兩點,且△ABF2的周長為8.當直線AB的斜率為$\frac{3}{4}$時,AF2與x軸垂直.
(I)求橢圓C的方程;
(Ⅱ)在x軸上是否存在定點M,總能使MF1平分∠AMB?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F(c,0),過點F且斜率為-$\frac{a}$的直線與雙曲線的漸近線交于點A,若△OAF的面積為4ab(O為坐標原點),則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.4

查看答案和解析>>

同步練習冊答案