3.函數(shù)y=f(x)的定義域是R,若對于任意的正數(shù)a,函數(shù)g(x)=f(x+a)-f(x)都是其定義域上的減函數(shù),則函數(shù)y=f(x)的圖象可能是( 。
A.B.C.D.

分析 根據(jù)題意列出不等式,進(jìn)而分析可得在自變量增大的過程中函數(shù)值的量要越來越小,分析選項(xiàng)可得答案.

解答 解:根據(jù)減函數(shù)定義,
設(shè)x1>x2
g(x1)-g(x2)<0
f(x1+a)-f(x1)<f(x2+a)-f(x2
f(x1+a)-f(x2+a)<f(x1)-f(x2
由此我們可知
在自變量增大的過程中函數(shù)值的量要越來越小,
故有f′(x1)<f′(x2
∴只有B圖象符合
故選:B.

點(diǎn)評 本題考查函數(shù)的單調(diào)性以及不等式的知識,注意巧妙利用函數(shù)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)z=$\frac{(1+i)(2-i)}{-i}$(i為虛數(shù)單位)的虛部為( 。
A.-1B.-iC.3D.3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一個(gè)正四面體的“骰子”(四個(gè)面分別標(biāo)有1,2,3,4四個(gè)數(shù)字),擲一次“骰子”三個(gè)側(cè)面的數(shù)字的和為“點(diǎn)數(shù)”,連續(xù)拋擲“骰子”兩次.
(1)設(shè)A為事件“兩次擲‘骰子’的點(diǎn)數(shù)和為16”,求事件A發(fā)生的概率;
(2)設(shè)X為兩次擲“骰子”的點(diǎn)數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,且∠ABC=120°.點(diǎn)E是棱PC的中點(diǎn),平面ABE與棱PD交于點(diǎn)F
(1)求證:AB∥EF;
(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,求三棱錐P-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為菱形,且PA=AD=2,$BD=2\sqrt{2}$,E、F分別為AD、PC中點(diǎn).
(1)求點(diǎn)F到平面PAB的距離;
(2)求證:平面PCE⊥平面PBC;
(3)求二面角E-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a為實(shí)數(shù),且(2+ai)(a-2i)=4-3i,則a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知AB為⊙O的直徑,PB、PN都是⊙O的切線,切點(diǎn)分別為B、N,PN交BA的延長線于點(diǎn)M.
(1)求證:AN∥OP;
(2)若AB=4$\sqrt{3}$,BP=6,求證:MN=NP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某大學(xué)有甲、乙兩個(gè)圖書館,對其借書的等待時(shí)間進(jìn)行調(diào)查,得到下表:
甲圖書館
 借書等待時(shí)間T1(分鐘) 1 2 3 4 5
 頻數(shù)1500 1000 500 500 1500 
乙圖書館
 借書等待時(shí)間T2(分鐘) 1 2 3 4 5
 頻數(shù) 1000 500 2000 1250 250
(1)分別求在甲、乙兩圖書館借書的平均等待時(shí)間;
(2)以表中等待時(shí)間的學(xué)生人數(shù)的頻率為概率,若某同學(xué)希望借書等待時(shí)間不超過3分鐘,請問在哪個(gè)圖書館借更能滿足他的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知雙曲線H:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{3}$=1(m>0)的右焦點(diǎn)到直線l:4x-3y-18=0的距離為2,且雙曲線的實(shí)軸長小于4,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與直線l交于點(diǎn)A(n,-2),直線l1:x=$\sqrt{3}$被橢圓E截得的弦長為4$\sqrt{2}$.
(1)求雙曲線H的標(biāo)準(zhǔn)方程和漸近線方程;
(2)求橢圓E的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案