14.一個(gè)正四面體的“骰子”(四個(gè)面分別標(biāo)有1,2,3,4四個(gè)數(shù)字),擲一次“骰子”三個(gè)側(cè)面的數(shù)字的和為“點(diǎn)數(shù)”,連續(xù)拋擲“骰子”兩次.
(1)設(shè)A為事件“兩次擲‘骰子’的點(diǎn)數(shù)和為16”,求事件A發(fā)生的概率;
(2)設(shè)X為兩次擲“骰子”的點(diǎn)數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

分析 (1)兩次點(diǎn)數(shù)之和為16,即兩次的底面數(shù)字為:(1,3),(2,2),(3,1),可得P(A).
(2)X的可能取值為0,1,2,3,利用相互獨(dú)立與古典概率計(jì)算公式即可得出.

解答 解:(1)兩次點(diǎn)數(shù)之和為16,即兩次的底面數(shù)字為:(1,3),(2,2),(3,1),
P(A)=$\frac{3}{4×4}$=$\frac{3}{16}$.…(5分)
(2)X的可能取值為0,1,2,3
且P(X=0)=$\frac{4}{4×4}$=$\frac{1}{4}$,P(X=1)=$\frac{3×2}{4×4}$=$\frac{3}{8}$,P(X=2)=$\frac{2×2}{4×4}$=$\frac{1}{4}$,P(X=3)=$\frac{2}{4×4}$=$\frac{1}{8}$.…(9分)
則X的分布列為

X0123
P$\frac{1}{4}$$\frac{3}{8}$$\frac{1}{4}$$\frac{1}{8}$
E(X)=0×$\frac{1}{4}$+1×$\frac{3}{8}$+2×$\frac{1}{4}$+3×$\frac{1}{8}$=$\frac{5}{4}$.…(12分)

點(diǎn)評(píng) 本題考查了相互獨(dú)立與古典概率計(jì)算公式、隨機(jī)變量分布列的性質(zhì)及其數(shù)學(xué)期望,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.梯形ABCD中,DC∥AB,DC=2,AB=4,AD=BC=3,則$\overrightarrow{AC}•\overrightarrow{BD}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)i為虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1+i}{z}$=1-i,則復(fù)數(shù)z=( 。
A.2iB.-2iC.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.我們國(guó)家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市共有戶籍人口400萬,其中老人(年齡60歲及以上)人數(shù)約有66萬,為了解老人們的健康狀況,政府從   老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評(píng)估,健康狀況共分為不能   自理、不健康尚能自理、基本健康、健康四個(gè)等級(jí),并以80歲為界限分成兩個(gè)群體進(jìn)行  統(tǒng)計(jì),樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再?gòu)臉颖局械牟荒茏岳淼睦先酥谐槿?6人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長(zhǎng)者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計(jì)該市大約有五分之一的戶籍老人無固定收入,政府計(jì)劃為這部分老人每月發(fā)  放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:①80歲及以上長(zhǎng)者每人每月發(fā)放生活補(bǔ)貼200元;②80歲以下   老人每人每月發(fā)放生活補(bǔ)貼120元;③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100    元.試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y滿足條件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-2y+6≥0}\\{x≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=x2+y2的最小值是(  )
A.$\sqrt{2}$B.2C.4D.$\frac{68}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定義在$(0,\frac{π}{2})$上的函數(shù),f′(x)為其導(dǎo)函數(shù),且$\frac{f(x)}{sinx}<\frac{{{f^'}(x)}}{cosx}$恒成立,則( 。
A.$f(\frac{π}{2})>2f(\frac{π}{6})$B.$\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{3})$C.$\sqrt{3}f(\frac{π}{6})<f(\frac{π}{3})$D.$f(1)<2f(\frac{π}{6})sin1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)y=f(x)對(duì)任意自變量x都有f(x)=f(2-x),且函數(shù)f(x)在[1,+∞)上單調(diào).若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a6)=f(a2012),則{an}的前2017項(xiàng)之和為(  )
A.0B.2017C.2016D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=f(x)的定義域是R,若對(duì)于任意的正數(shù)a,函數(shù)g(x)=f(x+a)-f(x)都是其定義域上的減函數(shù),則函數(shù)y=f(x)的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)z與復(fù)數(shù)i(2-i)互為共軛復(fù)數(shù)(其中i為虛數(shù)單位),則z=( 。
A.1-2iB.1+2iC.-1+2iD.-1-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案