4.復(fù)數(shù)z與復(fù)數(shù)i(2-i)互為共軛復(fù)數(shù)(其中i為虛數(shù)單位),則z=( 。
A.1-2iB.1+2iC.-1+2iD.-1-2i

分析 利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡i(2-i),再由共軛復(fù)數(shù)的概念得答案.

解答 解:∵i(2-i)=1+2i,
又復(fù)數(shù)z與復(fù)數(shù)i(2-i)互為共軛復(fù)數(shù),
∴z=1-2i.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一個正四面體的“骰子”(四個面分別標(biāo)有1,2,3,4四個數(shù)字),擲一次“骰子”三個側(cè)面的數(shù)字的和為“點(diǎn)數(shù)”,連續(xù)拋擲“骰子”兩次.
(1)設(shè)A為事件“兩次擲‘骰子’的點(diǎn)數(shù)和為16”,求事件A發(fā)生的概率;
(2)設(shè)X為兩次擲“骰子”的點(diǎn)數(shù)之差的絕對值,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知AB為⊙O的直徑,PB、PN都是⊙O的切線,切點(diǎn)分別為B、N,PN交BA的延長線于點(diǎn)M.
(1)求證:AN∥OP;
(2)若AB=4$\sqrt{3}$,BP=6,求證:MN=NP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某大學(xué)有甲、乙兩個圖書館,對其借書的等待時間進(jìn)行調(diào)查,得到下表:
甲圖書館
 借書等待時間T1(分鐘) 1 2 3 4 5
 頻數(shù)1500 1000 500 500 1500 
乙圖書館
 借書等待時間T2(分鐘) 1 2 3 4 5
 頻數(shù) 1000 500 2000 1250 250
(1)分別求在甲、乙兩圖書館借書的平均等待時間;
(2)以表中等待時間的學(xué)生人數(shù)的頻率為概率,若某同學(xué)希望借書等待時間不超過3分鐘,請問在哪個圖書館借更能滿足他的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.以點(diǎn)M(2,0)、N(0,4)為直徑的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)在定義域R上的導(dǎo)函數(shù)為f′(x),若方程f'(x)=0無解,且f[f(x)-2017x]=2017,當(dāng)g(x)=sinx-cosx-kx在[-$\frac{π}{2}$,$\frac{π}{2}$]上與f(x)在R上的單調(diào)性相同時,則實(shí)數(shù)k的取值范圍是(  )
A.(-∞,-1]B.(-∞,$\sqrt{2}$]C.[-1,$\sqrt{2}$]D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{2}$ax2-(a2+b)x+alnx(a,b∈R).
(Ⅰ)當(dāng)b=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=-1,b=0時,證明:f(x)+ex>-$\frac{1}{2}{x^2}$-x+1(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知雙曲線H:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{3}$=1(m>0)的右焦點(diǎn)到直線l:4x-3y-18=0的距離為2,且雙曲線的實(shí)軸長小于4,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與直線l交于點(diǎn)A(n,-2),直線l1:x=$\sqrt{3}$被橢圓E截得的弦長為4$\sqrt{2}$.
(1)求雙曲線H的標(biāo)準(zhǔn)方程和漸近線方程;
(2)求橢圓E的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={1,2,3},B={y|y=x-1,x∈A},則A∪B等于(  )
A.{1,2}B.{2,3}C.{0,1,2,3}D.{1,2,3,4}

查看答案和解析>>

同步練習(xí)冊答案