【題目】已知橢圓的兩個焦點分別為,,,過點的直線與橢圓相交于點兩點(兩點均在軸的上方),且,

1)若,求橢圓的方程;

2)直線的斜率;

3)求的大小.

【答案】1;(2)直線的斜率為;(3.

【解析】

(1),,,從而,故可求橢圓的方程;

(2)先設(shè)直線的方程為,再與橢圓的方程聯(lián)立,又由題設(shè)知,從而可求直線的斜率.

(3)由(2)求得點A的坐標(biāo),從而由三角函數(shù)可求得的大小.

(1),,,從而得,,所以,解得,

所以橢圓的方程為:
(2)(1),,所以橢圓的方程可以寫為,
由已知設(shè),,且,直線的方程為,

,
則它們的坐標(biāo)滿足方程組,消去整理,,
根據(jù)題意,,,
由題設(shè)知, ,所以,聯(lián)立三式,計算得出,

將結(jié)果代入韋達定理中計算得出滿足,所以直線的斜率為.

3)由(2)得,,所以,所以,所以

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,點分別在棱上,且

1)證明:點在平面內(nèi);

2)若,,,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l過拋物線Cy24x的焦點F且與C交于Ax1,y1),Bx2y2)兩點,則y1y2_____.過AB兩點分別作拋物線C的準(zhǔn)線的垂線,垂足分別為P,Q,準(zhǔn)線與x軸的交點為M,四邊形FAPM的面積記為S1,四邊形FBQM的面積記為S2,則S1S23|AF||BF|_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象上有且僅有兩個不同的點關(guān)于直線的對稱點在的圖象上,則實數(shù)的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是拋物線的焦點,過點且與坐標(biāo)軸不垂直的直線交拋物線于兩點,交拋物線的準(zhǔn)線于點,其中,.過點軸的垂線交拋物線于點,直線交拋物線于點.

1)求的值;

2)求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓長軸長為4,右焦點到左頂點的距離為3

1)求橢圓的方程;

2)設(shè)過原點的直線交橢圓于兩點(不在坐標(biāo)軸上),連接并延長交橢圓于點,若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201913日嫦娥四號探測器成功實現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實現(xiàn)月球背面軟著陸需要解決的一個關(guān)鍵技術(shù)問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點的軌道運行.點是平衡點,位于地月連線的延長線上.設(shè)地球質(zhì)量為M,月球質(zhì)量為M,地月距離為R,點到月球的距離為r,根據(jù)牛頓運動定律和萬有引力定律,r滿足方程:

.

設(shè),由于的值很小,因此在近似計算中,則r的近似值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雜交水稻之父”袁隆平一生致力于雜交水稻技術(shù)的研究、應(yīng)用與推廣,發(fā)明了“三系法”秈型雜交水稻,成功研究出“兩系法”雜交水稻,創(chuàng)建了超級雜交稻技術(shù)體系,為我國糧食安全、農(nóng)業(yè)科學(xué)發(fā)展和世界糧食供給做出了杰出貢獻;某雜交水稻種植研究所調(diào)查某地水稻的株高,得出株高(單位:cm)服從正態(tài)分布,其密度曲線函數(shù)為,則下列說法正確的是(

A.該地水稻的平均株高為100cm

B.該地水稻株高的方差為10

C.隨機測量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大

D.隨機測量一株水稻,其株高在(8090)和在(100,110)(單位:cm)的概率一樣大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】湖北七市州高三523日聯(lián)考后,從全體考生中隨機抽取44名,獲取他們本次考試的數(shù)學(xué)成績和物理成績,繪制成如圖散點圖:

根據(jù)散點圖可以看出之間有線性相關(guān)關(guān)系,但圖中有兩個異常點.經(jīng)調(diào)查得知,考生由于重感冒導(dǎo)致物理考試發(fā)揮失常,考生因故未能參加物理考試.為了使分析結(jié)果更科學(xué)準(zhǔn)確,剔除這兩組數(shù)據(jù)后,對剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計的值:其中,分別表示這42名同學(xué)的數(shù)學(xué)成績、物理成績,,2,42的相關(guān)系數(shù)

1)若不剔除兩名考生的數(shù)據(jù),用44組數(shù)據(jù)作回歸分析,設(shè)此時的相關(guān)系數(shù)為.試判斷的大小關(guān)系,并說明理由;

2)求關(guān)于的線性回歸方程,并估計如果考生參加了這次物理考試(已知考生的數(shù)學(xué)成績?yōu)?/span>125分),物理成績是多少?

3)從概率統(tǒng)計規(guī)律看,本次考試七市州的物理成績服從正態(tài)分布,以剔除后的物理成績作為樣本,用樣本平均數(shù)作為的估計值,用樣本方差作為的估計值.試求七市州共50000名考生中,物理成績位于區(qū)間(62.8,85.2)的人數(shù)的數(shù)學(xué)期望.

附:①回歸方程中:

②若,則

查看答案和解析>>

同步練習(xí)冊答案