12.已知曲線y=xn在點(diǎn)(1,0)處的切線與直線2x-y+1=0平行,則實(shí)數(shù)n=2.

分析 先求曲線的導(dǎo)數(shù),求出切點(diǎn)處的斜率,然后解n即可.

解答 解:直線2x-y+1=0的斜率為2,曲線y=xn-1在點(diǎn)(1,0)處的切線的斜率也是2;
而y′=nxn-1,所以f′(1)=n=2
故答案為:2.

點(diǎn)評(píng) 本題考查曲線的導(dǎo)數(shù),和直線的斜率的關(guān)系,直線的平行,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知y=f(x)為二次函數(shù),且f(0)=-5,f(-1)=-4,f(2)=-5,求此二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.有兩枚正四面體骰子,各個(gè)面分別標(biāo)有數(shù)字1,2,3,4,若同時(shí)拋擲兩枚骰子,則兩枚骰子底面2個(gè)數(shù)之差的絕對(duì)值為2的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.求滿足下列條件的直線方程:
(1)在y軸上的截距為-3,且經(jīng)過(guò)點(diǎn)(-2,1);
(2)過(guò)點(diǎn)(-3,1),且與x軸垂直;
(3)過(guò)點(diǎn)(-3,4)在兩軸上截距之和為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,且兩個(gè)坐標(biāo)系取相同的單位長(zhǎng)度,已知圓C1:ρ=-2cosθ,曲線${C_2}:\left\{{\begin{array}{l}{x=2cost}\\{y=sint}\end{array}}\right.$(t為參數(shù)).
(Ⅰ)求圓C1和曲線C2的普通方程;
(Ⅱ)過(guò)圓C1的圓心C1且傾斜角為$\frac{π}{3}$的直線l交曲線C2于A,B兩點(diǎn),求圓心C1到A,B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.經(jīng)過(guò)點(diǎn)(-1,2)且與直線3x-5y+6=0垂直的直線的方程為( 。
A.3x-5y+13=0B.5x+3y-1=0C.5x+3y+1=0D.5x-3y+11=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F,過(guò)F斜率為1的直線交橢圓于M,N兩點(diǎn),MN的垂直平分線交x軸于點(diǎn)P.若$\frac{|MN|}{|PF|}$=4,則橢圓C的離心率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=xlnx.
(1)求曲線f(x)在x=e處的切線方程.
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知復(fù)數(shù)z=$\frac{i}{\sqrt{3}+i}$(i為虛數(shù)單位),則z•$\overline{z}$=$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案