9.已知結(jié)論“a1、a2∈R+,且a1+a2=1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$≥4:若a1、a2、a3∈R+,且a1+a2+a3=1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$≥9”,請猜想若a1、a2、…、an∈R+,且a1+a2+…+an=1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$≥n2

分析 通過觀察已知條件發(fā)現(xiàn)規(guī)律,進而歸納推理可得結(jié)論.

解答 解:由題意,知:結(jié)論左端各項分別是和為1的各數(shù)ai的倒數(shù)(i=1,2,…,n),
右端n=2時為4=22,n=3時為9=32,
故ai∈R+,a1+a2+…+an=1時,結(jié)論為$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$≥n2(n≥2).
故答案為:n2

點評 本題考查合情推理之歸納推理,找出規(guī)律是解決本題的關(guān)鍵,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.當m為何實數(shù)時,復數(shù)z=m2+m-2+(m2-1)i為
(1)實數(shù);(2)虛數(shù);(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某四面體的三視圖如圖所示,該四面體的體積為( 。
A.$\frac{4}{3}$B.2C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某三棱錐的三視圖如圖所示,則該三棱錐最長的棱長為( 。
A.$\sqrt{5}$B.$2\sqrt{2}$C.3D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在平面直角坐標系xoy中直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,圓C的極坐標方程為ρ=2.
(1)寫出直線l的一般方程及圓C的標準方程;
(2)設P(-1,1),直線l與圓C相交于A,B兩點,求|PA|-|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知數(shù)列{an}滿足a1=1,an+an-1=${({\frac{1}{3}})^n}$(n≥2),Sn=a1•3+a2•32+…+an•3n,則4Sn-an•3n+1=$\left\{\begin{array}{l}{-5,}&{n=1}\\{n+2,}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.求函數(shù)$f(x)=sin(-2x+\frac{π}{2})$的單調(diào)遞減區(qū)間[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=$\sqrt{2}$a,點E在PD上,且PE:ED=2:1;
(1)證明:PA⊥平面ABCD;
(2)在棱PB上是否存在一點F,使三棱錐F-ABC是正三棱錐?證明你的結(jié)論;
(3)求以AC為棱,EAC與DAC為面的二面角θ的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.數(shù)列{an}中,${a_{n+1}}+{(-1)^n}{a_n}=2n-1$,則數(shù)列{an}前16項和等于( 。
A.130B.132C.134D.136

查看答案和解析>>

同步練習冊答案