17.某三棱錐的三視圖如圖所示,則該三棱錐最長(zhǎng)的棱長(zhǎng)為( 。
A.$\sqrt{5}$B.$2\sqrt{2}$C.3D.$3\sqrt{2}$

分析 如圖所示,該幾何體為三棱錐P-ABC.過(guò)點(diǎn)P作PO⊥平面ABC,垂足為O點(diǎn),連接OB,OC,則四邊形ABOC為平行四邊形.OA⊥OB.

解答 解:如圖所示,該幾何體為三棱錐P-ABC.
過(guò)點(diǎn)P作PO⊥平面ABC,垂足為O點(diǎn),連接OB,OC,則四邊形ABOC為平行四邊形.OA⊥OB.
則最長(zhǎng)棱為PC=$\sqrt{{2}^{2}+{2}^{2}+{1}^{2}}$=3.
故選:C.

點(diǎn)評(píng) 本題考查了三棱錐的三視圖、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知數(shù)列{an}滿足a1=0,an+1=an+2n,那么a2009的值是( 。
A.2 008×2009B.2008×2007C.2009×2 010D.20092

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓ρ=4cosθ與圓ρ=2sinθ交于O,A兩點(diǎn).
(Ⅰ)求直線OA的斜率;
(Ⅱ)過(guò)O點(diǎn)作OA的垂線分別交兩圓于點(diǎn)B,C,求|BC|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知F1、F2分別為雙曲線C:$\frac{x^2}{4}-\frac{y^2}{5}$=1的左、右焦點(diǎn),P為雙曲線C右支上一點(diǎn),且|PF1|=2|PF2|,則△PF1F2外接圓的面積為( 。
A.$\frac{4π}{15}$B.$\frac{16π}{15}$C.$\frac{64π}{15}$D.$\frac{256π}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的外接球的表面積等于( 。
A.$4\sqrt{3}π$B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一個(gè)放置在水平桌面上的正四棱柱的俯視圖如圖所示,其中α為銳角,則該幾何體的正視圖的面積的最大值為( 。
A.2或3B.2$\sqrt{3}$或3C.1或3D.2或2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知結(jié)論“a1、a2∈R+,且a1+a2=1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$≥4:若a1、a2、a3∈R+,且a1+a2+a3=1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$≥9”,請(qǐng)猜想若a1、a2、…、an∈R+,且a1+a2+…+an=1,則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$≥n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知{an}為等差數(shù)列,Sn為其前n項(xiàng)和,若a1=8,a4+a6=0,則S8=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.己知三棱錐A-BCO,OA,OB,OC兩兩垂直且長(zhǎng)度均為6,長(zhǎng)為2的線段MN的一個(gè)端點(diǎn)M在棱OA上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在底面BCO內(nèi)運(yùn)動(dòng)(含邊界),則MN的中點(diǎn)P的軌跡與三棱錐的O點(diǎn)所在的三個(gè)面所圍成的幾何體的表面積為( 。
A.$\frac{5π}{2}$B.$\frac{5π}{4}$C.$\frac{3+π}{2}$D.3+π

查看答案和解析>>

同步練習(xí)冊(cè)答案