10.某校食堂的原料費支出x與銷售額y(單位:萬元)之間有如下數(shù)據(jù),
x24568
y2535m5575
根據(jù)如表中提供的數(shù)據(jù),用最小二乘法得出y對x的回歸直線方程為${\;}_{y}^{∧}$=8.5x+7.5,則表中m的值為(  )
A.60B.50C.55D.65

分析 根據(jù)表中數(shù)據(jù)計算$\overline{x}$、$\overline{y}$,代入回歸直線方程求出m的值.

解答 解:根據(jù)表中數(shù)據(jù),計算$\overline{x}$=$\frac{1}{5}$×(2+4+5+6+8)=5,
$\overline{y}$=$\frac{1}{5}$×(25+35+m+55+75)=38+$\frac{m}{5}$,
回歸直線方程為${\;}_{y}^{∧}$=8.5x+7.5,
∴38+$\frac{m}{5}$=8.5×5+7.5,
解得m=60;
∴表中m的值為60.
故選:A.

點評 本題考查了線性回歸方程的應用問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.下列說法不正確的是( 。
A.若“p∧q”為假,則p,q至少有一個是假命題
B.命題“?x∈R,x2-x-1<0”的否定是“?x∈R,x2-x-1≥0”
C.設(shè)A,B是兩個集合,則“A⊆B”是“A∩B=A”的充分不必要條件
D.當α<0時,冪函數(shù)y=xα在(0,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設(shè)正實數(shù)x,y滿足$x>\frac{1}{2},y>1$,不等式$\frac{{4{x^2}}}{y-1}+\frac{y^2}{2x-1}≥m$恒成立,則m的最大值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$tanα=\frac{1}{2}$,$tan(2α-β)=\frac{1}{12}$,則tan(α-β)=( 。
A.$-\frac{2}{5}$B.$\frac{2}{5}$C.$-\frac{14}{23}$D.$-\frac{14}{23}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點F(1,0),過點F的直線l與橢圓交于C,D兩點,且點C到焦點的最大距離與最小距離之比為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)若CD與x軸垂直.A、B是橢圓上位于直線CD兩側(cè)的動點,滿足∠ACD=∠BCD,則直線AB的斜率是否為定值?若是,請求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在下列函數(shù)后的橫線上分別填上相應圖象的序號:
y=x${\;}^{\frac{7}{3}}$④;y=x${\;}^{-\frac{1}{4}}$⑤;y=x${\;}^{-\frac{3}{5}}$①;y=x${\;}^{-\frac{2}{3}}$③;y=x${\;}^{\frac{1}{4}}$②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.對具有線性相關(guān)關(guān)系的變量x,y,測得一組數(shù)據(jù)如下
x24568
y2040607080
根據(jù)上表,利用最小二乘法得它們的回歸直線方程為$\stackrel{∧}{y}$=10.5x+$\stackrel{∧}{a}$,據(jù)此模型預測當x=10時,y的估計值為( 。
A.105.5B.106C.106.5D.107

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知在R上可導,F(xiàn)(x)=f(x3-1)+f(1-x3),則F′(1)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知△ABC的三個頂點分別是A(4,0),B(0,-2),C(-2,1)
(Ⅰ)求AB邊上的高CD所在的直線方程
(Ⅱ)求過點C且在兩坐標軸上的截距相等的直線方程.

查看答案和解析>>

同步練習冊答案