7.如圖甲,在△ABC中,AB⊥AC,AD⊥BC,D為.垂足,則AB2=BD•BC,該結(jié)論稱為射影定理.如圖乙,在三棱錐A-BCD中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),類比射影定理,探究S△ABC、S△BCO、S△BCD這三者之間滿足的關(guān)是S△ABC2=S△BCO•S△BCD

分析 這是一個(gè)類比推理的題,在由平面圖形到空間圖形的類比推理中,一般是由點(diǎn)的性質(zhì)類比推理到線的性質(zhì),由線的性質(zhì)類比推理到面的性質(zhì),由已知在平面幾何中,(如圖所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,則AB2=BD•BC,我們可以類比這一性質(zhì),推理出若三棱錐A-BCD中,AD⊥面ABC,AO⊥面BCD,O為垂足,則S△ABC2=S△BCO•S△BCD

解答 解:由已知在平面幾何中,
若△ABC中,AB⊥AC,AD⊥BC,D是垂足,則AB2=BD•BC,
我們可以類比這一性質(zhì),推理出:
若三棱錐A-BCD中,AD⊥面ABC,AO⊥面BCD,O為垂足,
則S△ABC2=S△BCO•S△BCD
故答案為S△ABC2=S△BCO•S△BCD

點(diǎn)評(píng) 類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知直線3x-4y-6=0與圓x2+y2-2y+m=0(m∈R)相切,則m的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)[x]表示不超過x的最大整數(shù),如[4.3]=4,[-4,3]=-5.化簡(jiǎn):$\frac{1}{[\sqrt{1×2}]×[\sqrt{2×3}]×[\sqrt{3×4}]}$+$\frac{1}{[\sqrt{2×3}]×[\sqrt{3×4}]×[\sqrt{4×5}]}$+…+$\frac{1}{[\sqrt{n×(n+1)}]×[\sqrt{(n+1)×(n+2)}]×[\sqrt{(n+2)×(n+3)}]}$(結(jié)果用n表示,其中n是大于0的整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=ax3+bx2+c的圖象經(jīng)過點(diǎn)(0,1),且在x=1處的切線方程是y=x
(1)求y=f(x)的解析式;
(2)求y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若MP和OM分別是角α=$\frac{7π}{8}$的正弦線和余弦線,那么下列結(jié)論中正確的是( 。
A.MP<OM<0B.OM>0>MPC.OM<MP<0D.MP>0>OM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)求函數(shù)f(x)=cos2x-sinx的最大值;
(2)求函數(shù)f(x)=cos2x-asinx的最小值.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.對(duì)變量X與Y的卡方統(tǒng)計(jì)量Χ2的值,說法正確的是( 。
A.Χ2越大,“X與Y有關(guān)系”可信程度越小
B.Χ2越小,“X與Y有關(guān)系”可信程度越小
C.Χ2越接近0,“X與Y無關(guān)”程度越小
D.Χ2越大,“X與Y無關(guān)”程度越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)y=x3-2x,P(1,-1)為函數(shù)圖象上的點(diǎn),
(1)求函數(shù)圖象在點(diǎn)P處的切線方程;
(2)求該切線與坐標(biāo)軸所圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overrightarrow{OA}$=(1,-3),$\overrightarrow{OB}$=(2,-1),$\overrightarrow{OC}$=(k+1,k+3),若A、B、C三點(diǎn)不能構(gòu)成三角形,則實(shí)數(shù)k應(yīng)滿足的條件是( 。
A.k=-6B.k=6C.k=$\frac{1}{2}$D.k=-1

查看答案和解析>>

同步練習(xí)冊(cè)答案