A. | (0,$\frac{1}{e}$) | B. | (0,e) | C. | ($\frac{1}{e}$,e) | D. | (e,+∞) |
分析 由f(x)為定義在R上的奇函數(shù)便可得到f(lnx)-f(ln$\frac{1}{x}$)=2f(lnx),從而由原不等式可得到|f(lnx)|<f(1),進(jìn)一步便得到-f(1)<f(lnx)<f(1),可以說(shuō)明f(x)在R上單調(diào)遞增,從而便得到-1<lnx<1,這樣便可得出原不等式的解集.
解答 解:f(x)為定義在R上的奇函數(shù);
∴f(lnx)-f(ln$\frac{1}{x}$)=f(lnx)+f(lnx)=2f(lnx);
∴由若$\frac{|f(lnx)-f(ln\frac{1}{x})|}{2}$<f(1)得,|f(lnx)|<f(1);
∴-f(1)<f(lnx)<f(1);
又f(x)在[0,+∞)上是增函數(shù),∴f(x)在(-∞,0]上為增函數(shù);
∴f(x)在R上為增函數(shù);
∴-1<lnx<1;
∴$\frac{1}{e}$<x<e,
∴原不等式的解集為($\frac{1}{e}$,e)
故選:C.
點(diǎn)評(píng) 考查奇函數(shù)的定義,對(duì)數(shù)的運(yùn)算性質(zhì),以及絕對(duì)值不等式的解法,奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性特點(diǎn),以及增函數(shù)的定義,對(duì)數(shù)函數(shù)的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | $\sqrt{10}$ | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{10}$ | C. | $\sqrt{11}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>c>a | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
A | B | 合計(jì) | |
認(rèn)可 | |||
不認(rèn)可 | |||
合計(jì) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com