3.設(shè)數(shù)列{an}滿足:a1=1,an+1=2an+1.
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)求數(shù)列{n•(an+1)}的前n項和Tn

分析 (1)利用已知條件推出$\frac{{{a_{n+1}}+1}}{{{a_n}+1}}=2({n∈N*})$,說明數(shù)列{an+1}是以2為公比的等比數(shù)列.然后求解通項公式.
(2)利用錯位相減法求和求解即可.

解答 解:(1)證明:an+1+1=(2an+1)+1=2(an+1)
于是$\frac{{{a_{n+1}}+1}}{{{a_n}+1}}=2({n∈N*})$…(4分)
即數(shù)列{an+1}是以2為公比的等比數(shù)列.
因為${a_n}+1=({{a_1}+1})•{2^{n-1}}={2^n}$,所以${a_n}={2^n}-1$…(6分)
(2)${T_n}=1•{2^1}+2•{2^2}+3•{2^3}+…+n•{2^n}$①
2Tn=1•22+2•23+…+(n-1)•2n+n•2n+1②…(8分)
①-②得$-{T_n}=1•{2^1}+1•{2^2}+1•{2^3}+…+1•{2^n}-n•{2^{n+1}}$…(10分)
=$\frac{{2(1-{2^n})}}{1-2}-n•{2^{n+1}}$
=-2-(n-1)•2n+1
故${T_n}=(n-1)•{2^{n+1}}+2$…(12分)

點評 本題考查數(shù)列的應(yīng)用,數(shù)列的遞推關(guān)系式以及數(shù)列求和,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若x,y滿足約束條件$\left\{{\begin{array}{l}x-y+2≥0\\ y+2≥0\\ x+y+2≤0\end{array}}\right.$,則x2+y2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)增區(qū)間;
(3)若$x∈[{0,\frac{π}{2}}]$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C的對邊分別是a,b,c,且$\sqrt{3}a(1-2{sin^2}\frac{C}{2})=(2b-\sqrt{3}c)cosA$.
(1)求角A的大。
(2)若$b=2\sqrt{3},c=4$,D是BC的中點,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示,某幾何體的三視圖中,正視圖和側(cè)視圖都是腰長為1的等腰直角三角形,則該幾何體的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.1D.$1+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)的定義域為R,其導(dǎo)函數(shù)為f′(x).對任意的x∈R,總有f(-x)+f(x)=$\frac{{x}^{2}}{2}$,b=1;當(dāng)x∈(0,+∞)時,f′(x)<$\frac{x}{2}$.若f(4-m)-f(m)≥4-2m,則實數(shù)m的取值范圍是( 。
A.[1,+∞)B.(-∞,1]C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在公比為正數(shù)的等比數(shù)列{an}中,a3-a1=$\frac{16}{27}$,a2=-$\frac{2}{9}$,數(shù)列{bn}的前n項和Sn=n2
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sinkxsinkx+coskxcoskx-cosk2x,(其中k為常數(shù),x∈R)
(1)當(dāng)k=1時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)k=1時,求函數(shù)$g(x)=\frac{f(x)}{{a+{f^2}(x)}}$在$({0\;,\;\;\frac{π}{3}}]$上的最大值(其中常數(shù)a>0)
(3)是否存在k∈N*,使得函數(shù)f(x)為常函數(shù),若存在,求出k的值,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在各棱長均為2的三棱柱ABC-A1B1C1中,側(cè)面A1ACC1⊥底面ABC.
(1)求三棱柱ABC-A1B1C1的體積;
(2)已知點D是平面ABC內(nèi)一點,且四邊形ABCD為平行四邊形,在直線AA1上是否存在點P,使DP∥平面AB1C?若存在,請確定點P的位置,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案