精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓軸交于,兩點,為橢圓的左焦點,且是邊長為2的等邊三角形.

1)求橢圓的方程;

2)設過點的直線與橢圓交于不同的兩點,,點關于軸的對稱點為,都不重合),判斷直線軸是否交于一個定點?若是,請寫出定點坐標,并證明你的結論;若不是,請說明理由.

【答案】1;2,證明見詳解

【解析】

(1)由題意可得,是邊長為2的等邊三角形,可得,,進而得到橢圓方程;

(2)設出直線的方程和,的坐標,則可知的坐標,進而表示出的直線方程,再聯立方程與橢圓方程,即可把代入求得,結合韋達定理進行化簡,進而得出直線軸交于定點.

(1)由題意可得,,,

,

是邊長為2的等邊三角形,可得,

,,

則橢圓的方程為;

(2)由題可知直線的斜率不為0,故設直線的方程為:,

聯立,

,(),

,,,,,,

,,

經過點,,,的直線方程為,

,,

,.

,.

故直線軸交于定點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】天氣預報說,今后三天每天下雨的概率相同,現用隨機模擬的方法預測三天中有兩天下雨的概率,用骰子點數來產生隨機數.依據每天下雨的概率,可規(guī)定投一次骰子出現1點和2點代表下雨;投三次骰子代表三天;產生的三個隨機數作為一組.得到的10組隨機數如下:613265,114,236,561,435,443251,154,353.則在此次隨機模擬試驗中,每天下雨的概率的近似值是__________,三天中有兩天下雨的概率的近似值為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓的右焦點為,且短軸長為,離心率為.

1)求橢圓的標準方程;

2)設點為橢圓軸正半軸的交點,是否存在直線,使得交橢圓兩點,且恰是的垂心?若存在,求的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現一次音樂,要么不出現音樂;每盤游戲擊鼓三次后,出現一次音樂獲得10分,出現兩次音樂獲得20分,出現三次音樂獲得100分,沒有出現音樂則扣除200分(即獲得分).設每次擊鼓出現音樂的概率為,且各次擊鼓出現音樂相互獨立.

1)設每盤游戲獲得的分數為,求的分布列;

2)玩三盤游戲,至少有一盤出現音樂的概率是多少?

3)玩過這款游戲的許多人都發(fā)現,若干盤游戲后,與最初的分數相比,分數沒有增加反而減少了.請運用概率統(tǒng)計的相關知識分析分數減少的原因.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如圖所示:

等級

不合格

合格

得分

頻數

6

24

(Ⅰ)求, , 的值;

(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中隨機抽取10人進行座談.現再從這10人這任選4人,記所選4人的量化總分為,求的分布列及數學期望;

(Ⅲ)某評估機構以指標,其中表示的方差)來評估該校安全教育活動的成效.若,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

(Ⅰ)討論函數的單調性;

(Ⅱ)令,當時,證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,點C在以AB為直徑的圓上運動,PA⊥平面ABC,且PAAC,D,E分別是PC,PB的中點.

1)求證:PC⊥平面ADE

2)若二面角CAEB60°,求直線AB與平面ADE所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某公園內有一塊矩形綠地區(qū)域ABCD,已知AB=100米,BC=80米,以AD,BC為直徑的兩個半圓內種植花草,其它區(qū)域種值苗木. 現決定在綠地區(qū)域內修建由直路BN,MN和弧形路MD三部分組成的觀賞道路,其中直路MN與綠地區(qū)域邊界AB平行,直路為水泥路面,其工程造價為每米2a元,弧形路為鵝卵石路面,其工程造價為每米3a元,修建的總造價為W元. 設.

(1)求W關于的函數關系式;

(2)如何修建道路,可使修建的總造價最少?并求最少總造價.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】基于移動網絡技術的共享單車被稱為“新四大發(fā)明”之一,短時間內就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代碼

1

2

3

4

5

6

11

13

16

15

20

21

(1)請用相關系數說明能否用線性回歸模型擬合與月份代碼之間的關系.如果能,請計算出關于的線性回歸方程,如果不能,請說明理由;

(2)根據調研數據,公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數如下表:

車型 報廢年限

1年

2年

3年

4年

總計

10

30

40

20

100

15

40

35

10

100

經測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設每輛單車的使用壽命都是整數年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產生的利潤的估計值為決策依據,如果你是公司負責人,會選擇哪款車型?

參考數據:,,,.

參考公式:相關系數,.

查看答案和解析>>

同步練習冊答案