5.一個盒子里裝有相同大小的黑球10個,紅球12個,白球4個,從中任取2個,其中白球為X,則下列算式中等于$\frac{{C}_{22}^{1}{C}_{4}^{1}+{C}_{22}^{2}}{{C}_{26}^{2}}$的是( 。
A.P(0<X≤2)B.P(X≤1)C.P(X=1)D.P(X=2)

分析 由題意知本題是一個古典概型,由古典概型公式分別求得P(X=1)和P(X=0),即可判斷等式表示的意義.

解答 解:由題意可知:P(X=1)=$\frac{{C}_{22}^{1}•{C}_{4}^{1}}{{C}_{26}^{2}}$,
P(X=0)=$\frac{{C}_{22}^{2}}{{C}_{26}^{2}}$,
∴$\frac{{C}_{22}^{1}{C}_{4}^{1}+{C}_{22}^{2}}{{C}_{26}^{2}}$表示選1個白球或者一個白球都沒有取得即P(X≤1),
故答案選:B.

點評 本題是一個古典概型問題,這種問題在高考時可以作為文科的一道解答題,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題可以用組合數(shù)表示出所有事件數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+1\;\;\;(x<0)\\-x-1(x≥0)\end{array}$,則不等式x+(x+1)f(x)≤1的解集是[-3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z滿足z=$\frac{1}{1+i}$(i為虛數(shù)單位),則z=(  )
A.$\frac{1-i}{2}$B.$\frac{1+i}{2}$C.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知10名工人某天生產(chǎn)同一零件,生產(chǎn)件數(shù)的莖葉圖如圖所示,則眾數(shù)為14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.學(xué)校開設(shè)了6門任意選修課,要求每個學(xué)生從中選學(xué)3門,共有多少種不同選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知100件產(chǎn)品中有4件次品,無放回地從中抽取2次,每次抽取1件,求下列事件的概率:
(1)第一次取到次品,第二次取到正品;
(2)兩次都取到正品;
(3)兩次抽取中恰有一次取到正品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.從0~9這10個數(shù)字中任取2個,組成無重復(fù)數(shù)字的兩位數(shù),則組成奇數(shù)的概率為$\frac{40}{81}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2n+1(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,點D是△ABC的邊BC上一點,AB=$\sqrt{7}$,AD=2,BD=1,∠ACB=45°,那么∠ADB=$\frac{2π}{3}$,AC=$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案