3.執(zhí)行如圖所示的程序框圖.當(dāng)輸入x=ln$\frac{1}{2}$時(shí),輸出的y值為$\frac{1}{2}$

分析 根據(jù)題意,模擬程序框圖的運(yùn)行過(guò)程,即可得出輸出的結(jié)果.

解答 解:模擬執(zhí)行程序,可得程序框圖的作用是計(jì)算并輸出分段函數(shù)y=$\left\{\begin{array}{l}{x}&{x≥0}\\{{e}^{x}}&{x<0}\end{array}\right.$的值,
由于x=ln$\frac{1}{2}$=-ln2<0,
可得:y=e${\;}^{ln\frac{1}{2}}$=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序框圖的運(yùn)行過(guò)程,即可得出正確的答案,是容易題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.圓的極坐標(biāo)方程為ρ=2(cosθ+sinθ),則該圓的圓心極坐標(biāo)是( 。
A.$({1,\frac{π}{4}})$B.$({\frac{1}{2},\frac{π}{4}})$C.$(\sqrt{2},\frac{π}{4})$D.$({2,\frac{π}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=(2x-x2)ex,給以下四個(gè)結(jié)論:①f(x)>0的解集為{x|0<x<2};②$f({-\sqrt{2}})$是極小值,$f({\sqrt{2}})$是極大值;③f(x)有極小值,但無(wú)最小值;④f(x)有極小值,也有最小值.其中正確的是(  )
A.①②B.①②③C.①②④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若數(shù)列{an}滿足a1=1,an+1=nan+1,則第5項(xiàng)a5=( 。
A.5B.65C.89D.206

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.函數(shù)f(x)=($\frac{1}{2}$)x-log2x的零點(diǎn)個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且atanC=2csinA.
(I) 求角C的大;
(II) 求sinA+sinB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1(a>0)的一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,則a=( 。
A.1B.2C.$\sqrt{13}$D.$\sqrt{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知m、n為空間兩條不同直線,α、β、γ為不同的平面,則下列命題正確的是( 。
A.若α⊥β,a?α,則a⊥βB.若α⊥γ,β⊥γ,則α∥β
C.若α∥β,a?α,b?β,則a∥bD.若m⊥α,m∥n,n∥β,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知p:a>2,q:a2>4,則¬p是¬q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案