8.二項(xiàng)式(2x2-$\frac{1}{{x}^{3}}$)5的展開式中第四項(xiàng)的系數(shù)為( 。
A.-40B.10C.40D.-20

分析 根據(jù)二項(xiàng)展開式的通項(xiàng)公式可得第四項(xiàng)的系數(shù).

解答 解:二項(xiàng)式(2x2-$\frac{1}{{x}^{3}}$)5展開式中第四項(xiàng)系數(shù)為C53•(-1)3•22=-40,
故選A.

點(diǎn)評 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}•cosx$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“a=2”是“ax+y-2=0與直線2x+(a-1)y+4=0平行”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x∈R,log2(x2+4)≥2,命題q:y=x${\;}^{\frac{1}{2}}$是定義域上的減函數(shù),則下列命題中為真命題的是( 。
A.p∨(¬q)B.p∧qC.(¬p)∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=exsinx,則f′(0)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)令g(x)=f(x)-(ax-1),求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1-i)=1+i,則z的共軛復(fù)數(shù)是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生的時(shí)間與性別的關(guān)系,得到下面的數(shù)據(jù)表:
晚上白天合計(jì)
男嬰243155
女嬰82634
合計(jì)325789
你認(rèn)為嬰兒的性別與出生時(shí)間有關(guān)系的把握為( 。
參考公式及數(shù)據(jù):$\begin{array}{l}{K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}\end{array}$
P(k2≥k)0.250.150.1 00.050.025
k1.3232.0722.7063.8415.024
A.80%B.90%C.95%D.99%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.銳角△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足:$\sqrt{3}a-2bsinA=0$
(I)求角B的大小
(II)若a+c=5,且$a>c,b=\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案