分析 (Ⅰ)由2bsinA=$\sqrt{3}$a,利用正弦定理可得:2sinBsinA=$\sqrt{3}$sinA,sinA≠0,化簡整理即可得出.
(Ⅱ)由余弦定理可得:b2=a2+c2-2accosB,代入化簡求出ac,再根據(jù)三角形的面積公式計算即可.
解答 解:(Ⅰ)在銳角△ABC中,∵2bsinA=$\sqrt{3}$a,
∴2sinBsinA=$\sqrt{3}$sinA,sinA≠0,
∴sinB=$\frac{\sqrt{3}}{2}$,B∈(0,$\frac{π}{2}$),
∴B=$\frac{π}{3}$.
(Ⅱ)由余弦定理可得:b2=a2+c2-2accosB,
∴7=(a+c)2-2ac-2accos$\frac{π}{3}$,化為:ac=6,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×6×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$
點評 本題考查了正弦定理余弦定理和三角形的面積公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -40 | B. | 10 | C. | 40 | D. | -20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{7}}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{{5\sqrt{7}}}{16}$ | D. | $\frac{9}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b | B. | a<b<c | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com