20.設(shè)m∈R,實數(shù)x,y滿足$\left\{\begin{array}{l}{y≥m}\\{2x-3y+6≥0}\\{3x-2y-6≤0}\end{array}\right.$,若|2x+y|≤18恒成立,則實數(shù)m的取值范圍是( 。
A.-3≤m≤3B.-6≤m≤6C.-3≤m≤6D.-6≤m≤0

分析 將不等式恒成立問題轉(zhuǎn)化為平面區(qū)域在兩條直線之間利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:由|2x+y|≤18得-18≤2x+y≤18,
若|2x+y|≤18恒成立,
等價為不等式組對應(yīng)的平面區(qū)域
都在直線2x+y=18和2x+y=-18之間,
即對應(yīng)的兩個直線(紅色)之間,
作出不等式組對應(yīng)的平面區(qū)域如圖,
由$\left\{\begin{array}{l}{2x-3y+6=0}\\{3x-2y-6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=6}\\{y=6}\end{array}\right.$,即A(6,6),此時A滿足條件.2x+y=18,
由$\left\{\begin{array}{l}{2x-3y+6=0}\\{2x+y=-18}\end{array}\right.$得$\left\{\begin{array}{l}{x=-\frac{15}{2}}\\{y=-3}\end{array}\right.$,
即B(-$\frac{15}{2}$,-3),
要使不等式組對應(yīng)的平面區(qū)域都在兩條直線之間,
則直線y=m滿足在直線y-=-3和y=6之間,
則-3≤m≤6,
故選:C

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,將不等式恒成立轉(zhuǎn)化為平面區(qū)域在兩條直線之間是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知△ABC中,角A,B,C所對邊分別為a,b,c,且cosA=$\frac{3}{4}$.
(1)若△ABC的周長為30,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=90,求邊a的長;
(2)若tanC=3$\sqrt{7}$,且|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=$\sqrt{46}$,求△ABC的面積;
(3)若|$\overrightarrow{AC}$+$\overrightarrow{BC}$|=$\sqrt{46}$,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面向量$\overrightarrow a=(-2,1)$,$\overrightarrow b=(1,2)$,則$|{\overrightarrow a-2\overrightarrow b}|$的值是( 。
A.1B.5C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x3-3x2+2,g(x)=kx-2lnx+3(k>-$\frac{1}{6}$).
(Ⅰ)若過點(diǎn)P(a,-3)(a>0)恰有兩條直線與曲線y=f(x)相切,求a的值;
(Ⅱ)用min{p,q}表示p,q中的最小值,設(shè)函數(shù)h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三個零點(diǎn),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ex+(a+1)x(其中e為自然對數(shù)的底數(shù))
(1)設(shè)過點(diǎn)(0,0)的直線l與曲線f(x)相切于點(diǎn)(x0,f(x0)),求x0的值;
(2)函數(shù)g(x)=f(x)-(ax2+ex+1)的導(dǎo)函數(shù)為g′(x),若g′(x)在(0,1)上恰有兩個零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,AD=AA1=A1D=2,H為AD中點(diǎn),且A1H⊥BD.
(1)證明AB⊥AA1;
(2)求點(diǎn)C到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱柱ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別為A1B,C1C的中點(diǎn).
(1)求證:EF∥平面ABCD;
(2)若四棱柱ABCD-A1B1C1D1是長方體,且AB=AD=2AA1,求平面A1BF與平面ABCD所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x+1|+|2x-1|.
(1)求證:f(x)的最小值等于2;
(2)若對任意實數(shù)a和b,$|{2a+b}|+|a|-\frac{1}{2}|{a+b}|f(x)≥0$,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.?dāng)?shù)列{an}滿足a1=$\frac{1}{3}$,且對任意n∈N*,an+1=an2+an,cn=$\frac{1}{{{a_n}+1}}$,數(shù)列{cn}的前n項和為Sn,則S2017的整數(shù)部分是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案