15.已知Sn為等比數(shù)列{an}的前n項和•且S4=S3+3a3,a2=9.
(1)求數(shù)列{an}的通項公式
(2)設(shè)bn=(2n-1)an,求數(shù)列{bn}的前n項和Tn

分析 (1)設(shè)等比數(shù)列{an}的公比為q,運用等比數(shù)列的通項公式可得首項和公比,即可得到所求通項公式;
(2)求得bn=(2n-1)an=(2n-1)•3n;運用數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理即可得到所求和.

解答 解:(1)設(shè)等比數(shù)列{an}的公比為q,
S4=S3+3a3,a2=9,可得
a4=S4-S3=3a3,即q=$\frac{{a}_{4}}{{a}_{3}}$=3,
a1q=9,可得a1=3,
則數(shù)列{an}的通項公式為an=a1qn-1=3n
(2)bn=(2n-1)an=(2n-1)•3n;
則前n項和Tn=1•31+3•32+…+(2n-1)•3n;
3Tn=1•32+3•33+…+(2n-1)•3n+1;
兩式相減可得,-2Tn=3+2(32+33+…+3n)-(2n-1)•3n+1
=3+2•$\frac{9(1-{3}^{n-1})}{1-3}$-(2n-1)•3n+1;
化簡可得Tn=3+(n-1)•3n+1

點評 本題考查等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的求和方法:錯位相減法,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.sin300°+cos390°+tan(-135°)=( 。
A.$\sqrt{3}$-1B.1C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知數(shù)列滿足:${a_1}=1,\frac{1}{{{a_{n+1}}}}=\frac{2}{a_n}+1,({n∈{N^*}})$,若${b_{n+1}}=({n-λ})({\frac{1}{a_n}+1})$,b1=-λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍為λ<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{{e}^{x}}{2}$-$\frac{a}{{e}^{x}}$,若對任意的x1,x2∈[1,2],且x1≠x2時,[|f(x1)|-|f(x2)|](x1-x2)>0,則實數(shù)a的取值范圍為( 。
A.[-$\frac{{e}^{2}}{4}$,$\frac{{e}^{2}}{4}$]B.[-$\frac{{e}^{2}}{2}$,$\frac{{e}^{2}}{2}$]C.[-$\frac{{e}^{2}}{3}$,$\frac{{e}^{2}}{3}$]D.[-e2,e2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=2sin2(2x+$\frac{π}{6}$)-sin(4x+$\frac{π}{3}$)圖象的一個對稱中心可以為(  )
A.(-$\frac{5π}{48}$,0)B.(-$\frac{7π}{48}$,0)C.(-$\frac{5π}{48}$,1)D.(-$\frac{7π}{48}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)已知ABCD是復平面內(nèi)的平行四邊形,并且A,B,C三點對應的復數(shù)分別是3+i,-2i,-1-i,求D點對應的復數(shù);
(2)已知復數(shù)Z1=2,$\frac{{Z}_{2}}{{Z}_{1}}$=i,并且|z|=2$\sqrt{2}$,|z-z1|=|z-z2|,求z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知甲、乙兩煤礦每年的產(chǎn)量分別為200萬噸和260萬噸,需經(jīng)過東車站和西車站兩個車站運往外地.東車站每年最多能運280萬噸煤,西車站毎年最多能運360萬噸煤,甲煤礦運往東車站和西車站的運費價格分別為1元/t和1.5元/t,乙煤礦運往東車站和西車站的運費價格分別為0.8元/t和1.6元/t.煤礦應怎樣編制調(diào)運方案,能使總運費最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)i是虛數(shù)單位,則復數(shù)z=$\frac{1-3{i}^{3}}{1-2i}$的共軛復數(shù)z在復平面內(nèi)對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.等差數(shù)列{an}的前n項和為Sn,已知a2=7,a3為整數(shù),且Sn的最大值為S5
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案