16.已知數(shù)列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…$\frac{1}{n×(n+1)}$,…,Sn為數(shù)列的前n項(xiàng)和
(1)計(jì)算S1,S2,S3,S4并猜想計(jì)算Sn的公式
(2)用數(shù)學(xué)歸納法證明(1)的猜想.

分析 (1)計(jì)算S1,S2,S3,S4的值,根據(jù)規(guī)律猜想Sn;
(2)先驗(yàn)證n=1猜想成立,假設(shè)n=k猜想成立,再推導(dǎo)n=k+1猜想成立即可.

解答 解:(1)S1=$\frac{1}{1×2}$=$\frac{1}{2}$,S2=$\frac{1}{1×2}$+$\frac{1}{2×3}$=$\frac{2}{3}$,
S3=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$\frac{3}{4}$,S4=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$=$\frac{4}{5}$,
猜想:Sn=$\frac{n}{n+1}$.
(2)顯然n=1時(shí),猜想成立;
假設(shè)n=k(k≥1)時(shí)猜想成立,即Sk=$\frac{k}{k+1}$,
∴Sk+1=Sk+$\frac{1}{(k+1)(k+2)}$=$\frac{k}{k+1}$+$\frac{1}{(k+1)(k+2)}$=$\frac{{k}^{2}+2k+1}{(k+1)(k+2)}$=$\frac{k+1}{k+2}$.
∴當(dāng)n=k+1時(shí)猜想成立.
∴對(duì)任意n∈N+,猜想都成立.

點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法證明,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.雙曲線$\frac{x^2}{m}-\frac{y^2}{n}=1$(mn≠0)離心率為$\sqrt{3}$,其中一個(gè)焦點(diǎn)與拋物線y2=12x的焦點(diǎn)重合,則mn的值為(  )
A.$3\sqrt{2}$B.$3\sqrt{3}$C.18D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.△ABC 中,若$\overrightarrow{AC}•\overrightarrow{BC}-\overrightarrow{AB}•\overrightarrow{AC}$=0,則△ABC 是( 。
A.直角三角形B.等腰三角形C.等邊三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線2x+11y+16=0關(guān)于P(0,1)對(duì)稱的直線方程是( 。
A.2x+11y+38=0B.2x+11y-38=0C.2x-11y-38=0D.2x-11y+16=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={1,4},B={x|a+x=1},若A∩B=B,則實(shí)數(shù)a組成的集合是( 。
A.{0}B.{0,1}C.{0,-3}D.{0,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知命題P:?x0∈R,sinx0+cosx0=$\sqrt{3}$;命題q:函數(shù)f(x)=x${\;}^{\frac{1}{2}}$-($\frac{1}{2}$)x有一個(gè)零點(diǎn),則下列命題為真命題的是( 。
A.p∧qB.p∨qC.¬qD.p∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.點(diǎn)P(x0,y0)在橢圓C:$\frac{x^2}{2}+{y^2}$=1上,且x0=$\sqrt{2}cosβ,{y_0}$=sinβ,0<β<$\frac{π}{2}$.直線l2與直線l1:$\frac{{{x_0}x}}{2}+{y_0}$y=1垂直,O為坐標(biāo)原點(diǎn),直線OP的傾斜角為α,直線l2的傾斜角為γ.
(1)證明:點(diǎn)P是橢圓C:$\frac{x^2}{2}+{y^2}$=1與直線l1的唯一公共點(diǎn);
(2)證明:tanα,tanβ,tanγ構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若正實(shí)數(shù)x,y滿足2x+y=2,則$\frac{4{x}^{2}}{y+1}$+$\frac{{y}^{2}}{2x+2}$的最小值是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在極坐標(biāo)系中,若過點(diǎn)(2,0)且與極軸垂直的直線交曲線ρ=8cosθ于A、B兩點(diǎn),則|AB|=(  )
A.$4\sqrt{3}$B.$2\sqrt{7}$C.$2\sqrt{3}$D.$2\sqrt{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案