分析 (1)求出方程的根,求解數(shù)列的思想與公差,即可求解通項公式.
(2)利用錯位相減法求解數(shù)列的和即可.
解答 解:(1)方程x2-5x+6=0的兩個實根為2,3,由題意得a2=2,a3=3,設(shè)數(shù)列{an}的公差為d,
則d=a3-a2=3-2,=1,從而a1=1,所以數(shù)列{an}的通項公式an=n.
(2)由(1)知,${a_n}•{2^n}=n•{2^n}$,
∴${S_n}=1×{2^1}+2×{2^2}+3×{2^3}+…+n•{2^n}$①
∴$2{S}_{n}=1×{2}^{2}+2×{2}^{3}+…+(n-1){•2}^{n}+n•{2}^{n+1}$②
①-②得,$-{S_n}=2+({{2^2}+{2^3}+…+{2^n}})-n•{2^{n+1}}=\frac{{2×({1-{2^n}})}}{1-2}-n•{2^{n+1}}$=2n+1-2-n•2n+1=(1-n)•2n+1-2,∴${S_n}=({n-1})•{2^{n+1}}+2$.
點評 本題考查數(shù)列與函數(shù)相結(jié)合,數(shù)列通項公式以及數(shù)列求和,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 48 | C. | 56 | D. | 62 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x<1} | B. | {x|0≤x<1} | C. | {x|-3<x<2} | D. | {x|-3<x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com