19.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{a-{3^x}}}{{{3^x}+1}}$是奇函數(shù).
(1)求a的值;      
(2)證明f(x)在(-∞,+∞)上為減函數(shù);      
(3)若對(duì)于任意$x∈[{-\frac{π}{6},\frac{π}{3}}]$,不等式f(sin2x)+f(2-k)<0恒成立,求k的取值范圍.

分析 (1)由已知可得f(0)=0,求出a值,驗(yàn)證函數(shù)為奇函數(shù)即可;
(2)直接利用函數(shù)單調(diào)性的定義證明f(x)在(-∞,+∞)上為減函數(shù);
(3)由函數(shù)的奇偶性與單調(diào)性化不等式f(sin2x)+f(2-k)<0為sin2x>k-2,求出sin2x的最小值可得k的取值范圍.

解答 (1)解:∵f(x)為R上的奇函數(shù),∴f(0)=0,得a=1,
當(dāng)a=1時(shí),$f(x)=\frac{1-{3}^{x}}{{3}^{x}+1}$,滿(mǎn)足$f(-x)=\frac{1-{3}^{-x}}{{3}^{-x}+1}=\frac{\frac{{3}^{x}-1}{{3}^{x}}}{\frac{1+{3}^{x}}{{3}^{x}}}$=$-\frac{1-{3}^{x}}{{3}^{x}+1}$=-f(x),
f(x)為奇函數(shù),∴a=1;
(2)證明:任取x1,x2∈R,且x1<x2,
則$f({x_1})-f({x_2})=\frac{{1-{3^{x_1}}}}{{{3^{x_1}}+1}}-\frac{{1-{3^{x_2}}}}{{{3^{x_2}}+1}}$
=$\frac{{(1-{3^{x_1}})({3^{x_2}}+1)-(1-{3^{x_2}})({3^{x_1}}+1)}}{{({3^{x_1}}+1)({3^{x_2}}+1)}}$=$\frac{{2({3^{x_2}}-{3^{x_1}})}}{{({3^{x_1}}+1)({3^{x_2}}+1)}}$.
∵x1<x2,∴${3^{x_2}}-{3^{x_1}}>0$,
又∵$({3^{x_1}}+1)({3^{x_2}}+1)>0$,
∴f(x1)>f(x2),故f(x)為R上的減函數(shù);
(3)解:∵對(duì)于任意$x∈[{-\frac{π}{6},\frac{π}{3}}]$,不等式f(sin2x)+f(2-k)<0恒成立,
∴f(sin2x)<-f(2-k),
∵f(x)為R上的奇函數(shù),∴f(sin2x)<f(k-2),
又f(x)為R上的減函數(shù),∴$x∈[{-\frac{π}{6},\frac{π}{3}}]$時(shí),sin2x>k-2恒成立,
設(shè)t=2x$({-\frac{π}{3}≤t≤\frac{2π}{3}})$,∴sin2x的最小值為$-\frac{{\sqrt{3}}}{2}$,
∴$-\frac{{\sqrt{3}}}{2}>k-2$,解得$k<2-\frac{{\sqrt{3}}}{2}$.

點(diǎn)評(píng) 本題考查函數(shù)恒成立問(wèn)題,考查了函數(shù)奇偶性的性質(zhì),訓(xùn)練了利用函數(shù)的單調(diào)性求解函數(shù)不等式,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)數(shù)列{an}是各項(xiàng)為正數(shù)的等比數(shù)列,Sn為其前n項(xiàng)和,已知a2a4=16,$\frac{{a}_{4}+{a}_{5}+{a}_{8}}{{a}_{1}+{a}_{2}+{a}_{5}}$=8,則S5=( 。
A.40B.20C.31D.43

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知△ABC的三個(gè)頂點(diǎn)均在拋物線(xiàn)x2=y上,邊AC的中線(xiàn)BM∥y軸,|BM|=2,則△ABC的面積為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某樂(lè)隊(duì)參加一戶(hù)外音樂(lè)節(jié),準(zhǔn)備從3首原創(chuàng)新曲和5首經(jīng)典歌曲中隨機(jī)選擇4首進(jìn)行演唱.
(1)求該樂(lè)隊(duì)至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀(guān)眾與樂(lè)隊(duì)的互動(dòng)指數(shù)為a(a為常數(shù)),演唱一首經(jīng)典歌曲觀(guān)眾與樂(lè)隊(duì)的互動(dòng)指數(shù)為2a,求觀(guān)眾與樂(lè)隊(duì)的互動(dòng)指數(shù)之和X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若$cosα=\frac{3}{5},(\frac{3}{2}π<α<2π)$,則sinα=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知{an}是公差不為0 的等差數(shù)列,Sn是其前n項(xiàng)和,若a2a3=a4a5,S9=1,則a1的值是$-\frac{5}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.《中國(guó)詩(shī)詞大會(huì)》是央視推出的一檔以“賞中華詩(shī)詞,尋文化基因,品生活之美”為宗旨的大型文化類(lèi)競(jìng)賽節(jié)目,邀請(qǐng)全國(guó)各個(gè)年齡段、各個(gè)領(lǐng)域的詩(shī)詞愛(ài)好者共同參與詩(shī)詞知識(shí)比拼,“百人團(tuán)”由一百多位來(lái)自全國(guó)各地的選手組成,成員上至古稀老人,下至垂髫小兒,人數(shù)按照年齡分組統(tǒng)計(jì)如表:
分組(年齡)[7,20)[20,40)[40,80)
頻數(shù)(人)185436
(Ⅰ)用分層抽樣的方法從“百人團(tuán)”中抽取6人參加挑戰(zhàn),求從這三個(gè)不同年齡組中分別抽取的挑戰(zhàn)者的人數(shù);
(Ⅱ)在(Ⅰ)中抽出的6人中,任選2人參加一對(duì)一的對(duì)抗比賽,求這2人來(lái)自同一年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知雙曲線(xiàn)C:$\frac{x^2}{3}-\frac{y^2}{b^2}$=1(b>0)的右焦點(diǎn)為(2,0).
(1)求雙曲線(xiàn)C的漸近線(xiàn)方程.
(2)雙曲線(xiàn)C的兩條漸近線(xiàn)與直線(xiàn)x=1所圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)F1、F2,其離心率e=$\frac{1}{2}$,且點(diǎn)F2到直線(xiàn)$\frac{x}{a}$+$\frac{y}$=1的距離為$\frac{\sqrt{21}}{7}$.
(1)求橢圓E的方程;
(2)設(shè)點(diǎn)P(x0,y0)是橢圓E上的一點(diǎn)(x0≥1),過(guò)點(diǎn)P作圓(x+1)2+y2=1的兩條切線(xiàn),切線(xiàn)與y軸交于A、B兩點(diǎn),求|AB|的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案