10.已知△ABC的三個(gè)頂點(diǎn)均在拋物線x2=y上,邊AC的中線BM∥y軸,|BM|=2,則△ABC的面積為2$\sqrt{2}$.

分析 設(shè)A,B和C點(diǎn)坐標(biāo),利用中點(diǎn)坐標(biāo)公式求得M點(diǎn)坐標(biāo),由又BM∥y軸,則b=$\frac{a+c}{2}$,由|BM|=2,即可求得a-c=2$\sqrt{2}$,由三角形的面積公式可知S△ABC=2S△ABM,代入即可求得△ABC的面積.

解答 解:根據(jù)題意設(shè)A(a,a2),B(b,b2),C(c,c2),不妨設(shè)a>c,
∵M(jìn)為邊AC的中點(diǎn),
∴M($\frac{a+b}{2}$,$\frac{{a}^{2}+^{2}}{2}$),又BM∥y軸,則b=$\frac{a+c}{2}$,
故丨BM丨=丨$\frac{{a}^{2}+^{2}}{2}$-$\frac{(a+c)^{2}}{4}$丨=$\frac{(a-c)^{2}}{4}$=2,
∴(a-c)2=8,即a-c=2$\sqrt{2}$,
作AH⊥BM交BM的延長線于H.
∴S△ABC=2S△ABM=2×$\frac{1}{2}$×丨BM丨丨AH丨=2丨a-b丨=2丨a-$\frac{a+c}{2}$丨=a-c=2$\sqrt{2}$,
△ABC的面積2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點(diǎn)評 本題考查三角形面積的計(jì)算,考查拋物線的方程,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},則“x∈A∪B“是“x∈C“的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與直線y=x+3只有一個(gè)公共點(diǎn),且橢圓的離心率為$\frac{{\sqrt{5}}}{5}$,則橢圓C的方程為(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}=1$B.$\frac{x^2}{5}+\frac{y^2}{4}=1$C.$\frac{x^2}{9}+\frac{y^2}{5}=1$D.$\frac{x^2}{25}+\frac{y^2}{20}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.《九章算術(shù)》有這樣一個(gè)問題:今有女子善織,日增等尺,第二日、第五日、第八日所織之和為十五尺,九日共織尺數(shù)是( 。
A.5B.15C.45D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={x|x2-3x<0},B={x||x|>2},則A∩B=( 。
A.(2,3)B.(-2,3)C.(0,2)D.(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={0,3,4},B={-1,0,2,3},則A∩B={0,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在平面四邊形ABCD中,O為BD的中點(diǎn),且OA=3,OC=5,若$\overrightarrow{AB}$•$\overline{AD}$=-7,則$\overrightarrow{BC}$•$\overrightarrow{DC}$的值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{a-{3^x}}}{{{3^x}+1}}$是奇函數(shù).
(1)求a的值;      
(2)證明f(x)在(-∞,+∞)上為減函數(shù);      
(3)若對于任意$x∈[{-\frac{π}{6},\frac{π}{3}}]$,不等式f(sin2x)+f(2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若f′(x0)=-3,則$\underset{lim}{h→0}$$\frac{f({x}_{0}+h)-f({x}_{0}-3h)}{h}$=( 。
A.-10B.-11C.-12D.-16

查看答案和解析>>

同步練習(xí)冊答案