15.已知集合A={0,3,4},B={-1,0,2,3},則A∩B={0,3}.

分析 由A與B,求出兩集合的交集即可.

解答 解:集合A={0,3,4},B={-1,0,2,3},則A∩B={0,3};
故答案為:{0,3}

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握集合的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=8lnx+15x-x2,數(shù)列{an}滿足an=f(n),n∈N+,數(shù)列{an}的前n項(xiàng)和Sn最大時(shí),n=( 。
A.15B.16C.17D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中(單位長(zhǎng)度相同),曲線C的極坐標(biāo)方程為ρsin2θ=8cosθ.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于A、B兩點(diǎn),求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知△ABC的三個(gè)頂點(diǎn)均在拋物線x2=y上,邊AC的中線BM∥y軸,|BM|=2,則△ABC的面積為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知{an}是公差不為0的等差數(shù)列,Sn是其前n項(xiàng)和,若a2a3=a4a5,S4=27,則a1的值是$\frac{135}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某樂隊(duì)參加一戶外音樂節(jié),準(zhǔn)備從3首原創(chuàng)新曲和5首經(jīng)典歌曲中隨機(jī)選擇4首進(jìn)行演唱.
(1)求該樂隊(duì)至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂隊(duì)的互動(dòng)指數(shù)為a(a為常數(shù)),演唱一首經(jīng)典歌曲觀眾與樂隊(duì)的互動(dòng)指數(shù)為2a,求觀眾與樂隊(duì)的互動(dòng)指數(shù)之和X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知{an}是公差不為0 的等差數(shù)列,Sn是其前n項(xiàng)和,若a2a3=a4a5,S9=1,則a1的值是$-\frac{5}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.
(3)探討函數(shù)F(x)=lnx-$\frac{1}{{e}^{x}}$+$\frac{2}{ex}$是否存在零點(diǎn)?若存在,求出函數(shù)F(x)的零點(diǎn),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案