4.已知復(fù)數(shù)z=i(2-i),其中i是虛數(shù)單位,則z的模|z|=( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.5

分析 利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),再由復(fù)數(shù)模的計(jì)算公式得答案.

解答 解:∵z=i(2-i)=-i2+2i=1+2i,
∴|z|=$\sqrt{{1}^{2}+{2}^{2}}=\sqrt{5}$.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-{x^2}-3x$有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,記點(diǎn)M(x1,f(x1)),N(x2,f(x2)).
(Ⅰ)求直線MN的方程;
(Ⅱ)證明:線段MN與曲線y=f(x)有且只有一個(gè)異于M、N的公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知△ABC是邊長(zhǎng)為4的等邊三角形,D、P是△ABC內(nèi)部?jī)牲c(diǎn),且滿足$\overrightarrow{AD}=\frac{1}{4}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{AP}=\overrightarrow{AD}+\frac{1}{8}\overrightarrow{BC}$,則△ADP的面積為( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.球O與棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的各個(gè)面都相切,點(diǎn)M為棱DD1的中點(diǎn),則平面ACM截球O所得截面的面積為( 。
A.$\frac{4π}{3}$B.πC.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在區(qū)間[-3,3]內(nèi)隨機(jī)取出一個(gè)數(shù)a,使得1∈{x|2x2+ax-a2>0}的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.雙曲線x2-$\frac{{y}^{2}}{3}$=1的焦距是4,離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若${(x-1)^8}=1+{a_1}x+{a_2}{x^2}+…+{a_8}{x^8}$,則a5=(  )
A.56B.-56C.35D.-35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}-{y^2}$=1的一條漸近線方程是y=$\frac{{\sqrt{3}}}{3}$x,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知一個(gè)幾何體的三視圖如圖所示,其中俯視圖為半圓面,則該幾何體的體積為(  )
A.B.C.πD.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案