7.已知集合A={x|(x-3)(x+1)<0},B={x|x>1},則A∩B=( 。
A.{x|x>3}B.{x|x>1}C.{x|-1<x<3}D.{x|1<x<3}

分析 求出兩個(gè)集合,然后求解交集即可.

解答 解:A={x|(x-3)(x+1)<0}={x|-1<x<3}),B={x|x>1},則A∩B={x|1<x<3},
故選:D

點(diǎn)評(píng) 本題考查集合的交集的求法,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}x(x+4),x≥0\\ x(x-4),x<0\end{array}\right.$,則f(-3)=(  )
A.-3B.21C.3D.-21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^x}+m\;-1,x≥0\\ ax+b,x<0\end{array}\right.$其中m<-1,對(duì)于任意x1∈R且x1≠0,均存在唯一實(shí)數(shù)x2,使得f(x2)=f(x1),且x1≠x2,若|f(x)|=f(m)有4個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是( 。
A.(0,1)B.(-1,0)C.(-2,-1)∪(-1,0)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在平面直角坐標(biāo)系中,角α的終邊經(jīng)過(guò)點(diǎn)(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),則sinα的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的一個(gè)零點(diǎn)為$\frac{π}{3}$,其圖象距離該零點(diǎn)最近的一條對(duì)稱(chēng)軸為x=$\frac{π}{12}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若關(guān)于x的方程f(x)+log2k=0在x∈[$\frac{π}{4}$,$\frac{2π}{3}$]上恒有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某手機(jī)廠(chǎng)商推出一次智能手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:

女性用戶(hù)分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)2040805010
男性用戶(hù)分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)4575906030
(1)完成下列頻率分布直方圖,并比較女性用戶(hù)和男性用戶(hù)評(píng)分的方差大。ú挥(jì)算具體值,給出結(jié)論即可);
(2)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶(hù)中抽取20名用戶(hù),在這20名用戶(hù)中,從評(píng)分不低于80分的用戶(hù)中任意取2名用戶(hù),求2名用戶(hù)評(píng)分小于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.平面內(nèi)的動(dòng)點(diǎn)(x,y)滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≤0}\end{array}\right.$,則z=2x+y的取值范圍是( 。
A.(-∞,+∞)B.(-∞,4]C.[4,+∞)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)復(fù)數(shù)z=-2+i(i是虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則|(1+z)•$\overline{z}$|等于( 。
A.$\sqrt{5}$B.2$\sqrt{5}$C.5$\sqrt{2}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-3,5),若(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{c}$,則$\overrightarrow{c}$的坐標(biāo)可以是( 。
A.(-2,3)B.(-2,-3)C.(4,-4)D.(4,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案