15.設(shè)f(x)=x3-$\frac{1}{2}$x2-2x+5,若至少存在一個(gè)x0∈[-1,2]時(shí),f(x0)<m成立,則實(shí)數(shù)m的取值范圍是m>$\frac{7}{2}$.

分析 由題意可得:m>f(x)min,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出.

解答 解:至少存在一個(gè)x0∈[-1,2]時(shí),f(x0)<m成立,∴m>f(x)min

 x $[-1,-\frac{2}{3})$ $-\frac{2}{3}$ $(-\frac{2}{3},1)$ 1 (1,2]
 f′(x)+ 0- 0+
 f(x) 單調(diào)遞增 極大值 單調(diào)遞減 極小值 單調(diào)遞增
f′(x)=3x2-x-2=(3x+2)(x-1),x∈[-1,2],
列表如下:由表格可知:x=1時(shí),函數(shù)f(x)取得極小值,f(1)=1-$\frac{1}{2}$-2+5=$\frac{7}{2}$,又f(-1)=-1-$\frac{1}{2}$+2+5=$\frac{15}{2}$.
∴f(x)min=$\frac{7}{2}$.
∴$m>\frac{7}{2}$.
故答案為:$m>\frac{7}{2}$.

點(diǎn)評(píng) 本題考查了微積分基本定理、二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)$f(x)=\frac{1}{{\sqrt{x+2}}}+{(x-1)^0}$的定義域?yàn)镸,g(x)=ln(2-x)的值域?yàn)镹,則M∩N=(  )
A.{x|x>-2}B.{x|x<2}C.{x|-2<x<2}D.{x|x>-2,x≠1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.把函數(shù)y=sinx(x∈R)的圖象上所有的點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),再把所得圖象向左平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到的圖象所表示的函數(shù)是( 。
A.y=sin($\frac{1}{2}$x+$\frac{π}{6}}$),x∈RB.y=sin($\frac{1}{2}$x+$\frac{π}{12}$),x∈R
C.y=sin(2x+$\frac{π}{3}$),x∈RD.y=sin(2x+$\frac{π}{6}$),x∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=Asin(ωx+ϕ)(其中A>0,ω>0)的部分圖象如圖所示,則f(2)+f(3)+…+f(2016)的值為( 。
A.$\sqrt{2}$B.$2+\sqrt{2}$C.0D.$-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某射手射中10環(huán)的概率為0.22,那么,在一次射擊訓(xùn)練中,該射手射擊一次不夠10環(huán)的概率為0.78.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{7π}{12}$
Asin(ωx+φ)30
(1)請(qǐng)將上表空格中的數(shù)據(jù)在答卷的相應(yīng)位置上,并求函數(shù)f(x)的解析式;
(2)若y=f(x)的圖象上所有點(diǎn)向左平移$\frac{π}{6}$個(gè)單位后對(duì)應(yīng)的函數(shù)為g(x),求當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時(shí),函數(shù)y=g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.關(guān)于x的方程2ax=x2-2alnx有唯一解,則正實(shí)數(shù)a的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求(2a+3b)6的展開(kāi)式的第3項(xiàng)的二項(xiàng)式系數(shù)及第3項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)和g(x)的定義域均是(-$\frac{1}{2}$,+∞),其中f(x)=2(x+1)ex+3,g(x)=x2+4x+2,則不等式f(x)>g(x)+2e3-2的解集是(${e}^{\frac{5}{2}}$-2e3-2,+∞)(e是自然對(duì)數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

同步練習(xí)冊(cè)答案