7.函數(shù)$y=tan(\frac{π}{4}-x)$的定義域是(  )
A.{x|x≠$\frac{π}{4}$,k∈Z x∈R}B.{x|x≠kπ$+\frac{π}{4}$,k∈Z,x∈R}
C.{x|x≠$-\frac{π}{4}$,k∈Z x∈R}D.{x|x≠kπ$+\frac{3}{4}π$,k∈Z,x∈R}

分析 根據(jù)正切函數(shù)的定義域是{x|x≠kπ+$\frac{π}{2}$,k∈Z},求出函數(shù)y的定義域即可.

解答 解:函數(shù)$y=tan(\frac{π}{4}-x)$=-tan(x-$\frac{π}{4}$),
令x-$\frac{π}{4}$≠kπ+$\frac{π}{2}$,k∈Z,
解得x≠kπ+$\frac{3π}{4}$,k∈Z,
∴函數(shù)y的定義域是{x|x≠kπ+$\frac{3π}{4}$,k∈Z}.
故選:D.

點(diǎn)評(píng) 本題考查了正切函數(shù)的定義域問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(α)=$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)cos(-π+α)}$;
(1)化簡(jiǎn)f(α);
(2)若α的終邊在第二象限,$sinα=\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=ln(-2x)+3x,則f′(-1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=sinx(x∈[0,π])的圖象與坐標(biāo)軸圍成的圖形的面積為m,二項(xiàng)式(mx-3)n的展開(kāi)式中只有第四項(xiàng)的二項(xiàng)式系數(shù)最大,若(mx-3)n=a0+a1x+a2x2+…anxn,則a1+2a2+3a3+…+nan=-12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={-1,0,1},$B=\left\{{α|-\frac{π}{3}≤α≤\frac{π}{4}}\right\}$,則A∩B中元素個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y+4的最小值為(  )
A.29B.25C.11D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知點(diǎn)A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,記C的焦點(diǎn)為F,則直線AF的斜率為( 。
A.-2B.-$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=lnx+$\frac{1}{a}$(α>0);
(1)如果函數(shù)F(x)=f(x)-ax+$\frac{1-α}{x}$在(1,2)內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若不等式af(x)≥x在區(qū)間[1,10]恒成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在各項(xiàng)均為正數(shù)的數(shù)列{an}中,數(shù)列的前n項(xiàng)和為Sn,滿足Sn=1-nan(n∈N*
(1)求a1,a2,a3的值;
(2)由(1)猜想出數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案