A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | 2 | D. | 4 |
分析 把直線方程整理成點(diǎn)斜式,求得A點(diǎn)的坐標(biāo),代入直線mx+ny-1=0中,求得m+n的值,最后根據(jù)基本不等式求得mn的最大值.
解答 解:整理直線方程得y=k(x-1)+1,
∴點(diǎn)A的坐標(biāo)為(1,1),
∵點(diǎn)A在直線mx+ny-1=0(m,n>0)上,
∴m+n-1=0,即m+n=1,
∵m>0,n>0,
∴m+n≥2$\sqrt{mn}$,m=n時(shí)取等號(hào),
∴mn≤$\frac{1}{4}$,
即mn的最大值為$\frac{1}{4}$,
故選:B.
點(diǎn)評 本題主要考查了基本不等式,直線方程問題,解題的關(guān)鍵是求得m+n的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
B. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞增,其圖象關(guān)于直線x=$\frac{π}{2}$對稱 | |
C. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{4}$對稱 | |
D. | y=g(x)在(0,$\frac{π}{2}}$)單調(diào)遞減,其圖象關(guān)于直線x=$\frac{π}{2}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{3}$-y2=1 | B. | $\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{4}$=1 | C. | x2-$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{8}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 84 | B. | 57 | C. | 45 | D. | 42 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com