6.若某商品銷售量y(件)與銷售價格x(元/件)負(fù)相關(guān),則其回歸直線方程可能是( 。
A.$\stackrel{∧}{y}$=-10x-100B.$\stackrel{∧}{y}$=10x-100C.$\stackrel{∧}{y}$=-10x+200D.$\stackrel{∧}{y}$=10x-200

分析 根據(jù)某商品銷售量y(件)與銷售價格x(元/件)負(fù)相關(guān),回歸系數(shù)為負(fù),
再結(jié)合實際進(jìn)行分析,即可得到答案.

解答 解:由銷售量y(件)與銷售價格x(元/件)負(fù)相關(guān),
可排除B、D選項,
而A選項中回歸方程$\stackrel{∧}{y}$=-10x-100,
當(dāng)x=0時$\stackrel{∧}{y}$=-100<0,不符合實際意義.
故選:C.

點評 本題考查了回歸分析的基本概念與實際應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.隨機變量X的取值為0,1,2,若P(X=0)=$\frac{1}{5}$,E(X)=1,則D(X)=( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{10}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow a$,$\overrightarrow b$的夾角為120°,$\overrightarrow a=(1,\sqrt{3})$,$|\overrightarrow a+\overrightarrow b|=\sqrt{3}$,則$|\overrightarrow b|$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)(1+$\frac{1}{2}$x)m=a0+a1x+a2x2+a3x3+…+amxm,若a0,a1,a2成等差數(shù)列.
(Ⅰ)求展開式的中間項;
(Ⅱ)求展開式中所有含x奇次冪的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=$\left\{\begin{array}{l}{a{x}^{2}+x,x>0}\\{-2x,x≤0}\end{array}\right.$,若不等式f(x-2)≥f(x)對一切x∈R恒成立,則實數(shù)a的取值范圍為[-$\frac{9}{16},-\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{3}$x3-2x2+3x(x∈R)的圖象為曲線C.
(1)求過曲線C上任意一點切線斜率的取值范圍;
(2)若在曲線C上存在兩條相互垂直的切線,求其中一條切線與曲線C的切點的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在(0,+∞)上的函數(shù)f(x)滿足x2f′(x)+1>0,f(2)=$\frac{9}{2}$,則不等式f(lgx)<$\frac{1}{lgx}$+4的解集為( 。
A.(10,100)B.(0,100)C.(100,+∞)D.(1,100)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若?x∈D,g(x)≤f(x)≤h(x),則稱函數(shù)f(x)為函數(shù)g(x)到函數(shù)h(x)在區(qū)間D上的“隨性函數(shù)”.已知函數(shù)f(x)=kx,g(x)=x2-2x,h(x)=(x+1)(lnx+1),且f(x)是g(x)到h(x)在區(qū)間[1,e]上的“隨性函數(shù)”,則實數(shù)k的取值范圍是[e-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=alnx+b(a,b∈R),曲線f(x)在x=1處的切線方程為x-y-1=0.
(Ⅰ)求a,b的值;
(Ⅱ)證明:$f(x)+\frac{1}{x}≥1$;
(Ⅲ)已知滿足xlnx=1的常數(shù)為k.令函數(shù)g(x)=mex+f(x)(其中e是自然對數(shù)的底數(shù),e=2.71828…),若x=x0是g(x)的極值點,且g(x)≤0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案