18.“|x-1|+|x+2|≤5”是“-3≤x≤2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 由|x-1|+|x+2|≤5,對x分類討論,解出即可判斷出結(jié)論.

解答 解:由“|x-1|+|x+2|≤5”,x≥1時,化為:x-1+x+2≤5,解得1≤x≤2;
-2≤x<1時,化為:1-x+x+2≤5,化為0≤2恒成立,解得-2≤x<1;
x<-2時,化為:1-x-x-2≤5,解得-3≤x<-2.
綜上可得:“|x-1|+|x+2|≤5”的解集為:{x|-3≤x≤2}.
∴“|x-1|+|x+2|≤5”是“-3≤x≤2”的充要條件.
故選:C.

點評 本題考查了絕對值不等式的解法、分類討論方法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)$f(x)=\frac{{{a^x}-1}}{{{a^x}+1}}+$${log_a}({\frac{1-x}{1+x}})$(a>0,a≠1),f(m)=n,m∈(-1,1),則f(-m)=(  )
A.nB.-nC.0D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a=21.3,b=40.7,c=log38,則a,b,c的大小關(guān)系為(  )
A.a<c<bB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$、$\overrightarrow$都是非零向量,下列四個條件中,使$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$=$\frac{\overrightarrow}{|\overrightarrow|}$成立的充要條件是( 。
A.$\overrightarrow{a}$=$\overrightarrow$B.$\overrightarrow{a}$=2$\overrightarrow$C.$\overrightarrow{a}$∥$\overrightarrow$且|$\overrightarrow{a}$|=|$\overrightarrow$|D.$\overrightarrow{a}$∥$\overrightarrow$且方向相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ y≥1\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校的學(xué)生文娛團隊由理科組和文科組構(gòu)成,具體數(shù)據(jù)如表所示:
組別文科理科
性別男生女生男生女生
人數(shù)3132
學(xué)校準(zhǔn)備從該文娛團隊中選出4人到某社區(qū)參加大型公益活動演出,每選出一名男生,給其所在的組記1分;每選出一名女生,給其所在的組記2分,要求被選出的4人中文科組和理科組的學(xué)生都有.
(I)求理科組恰好得4分的概率;
(II)記文科組的得分為X,求隨機變量X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)$f(x)=\frac{x}{e^x}$,若不等式f(x)-a(x+1)>0的解集中有且僅有一個整數(shù),則實數(shù)a的取值范圍是( 。
A.$[{\frac{1}{e^2},\frac{1}{e}}]$B.$[{\frac{1}{e^2},\frac{1}{e}})$C.$[{\frac{2}{{3{e^2}}},\frac{1}{2e}}]$D.$[{\frac{2}{{3{e^2}}},\frac{1}{2e}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)全集U=R,A={x|x2-x-6≥0},B={x|x>1},則(∁UA)∪B=( 。
A.{x|x≥-2}B.{x|x>-2}C.{x|1<x<3}D.{x|1<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=2sin2ωx+sin2ωx-1(x∈R)滿足f(α)=-$\sqrt{2}$,f(β)=0且|α-β|的最小值為$\frac{3π}{4}$,則正數(shù)ω的值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{8}{5}$

查看答案和解析>>

同步練習(xí)冊答案