19.我們可以用隨機模擬的方法估計π的值,如圖程序框圖表示其基本步驟(函數(shù)RAND是產(chǎn)生隨機數(shù)的函數(shù),它能隨機產(chǎn)生(0,1)內(nèi)的任何一個實數(shù)).若輸出的結(jié)果為521,則由此可估計π的近似值為( 。
A.3.119B.3.126C.3.132D.3.151

分析 我們可分析出程序的功能是利用隨機模擬實驗的方法求任取(0,1)上的x,y,z,求x2+y2+z2<1的概率,計算x2+y2+z2<1發(fā)生的概率為$\frac{4}{3}π•{1}^{3}•\frac{1}{8}$=$\frac{π}{6}$,代入幾何概型公式,即可得到答案.

解答 解:x2+y2+z2<1發(fā)生的概率為$\frac{4}{3}π•{1}^{3}•\frac{1}{8}$=$\frac{π}{6}$,當輸出結(jié)果為521時,i=1001,m=521,x2+y2+z2<1發(fā)生的概率為P=$\frac{521}{1000}$,∴$\frac{521}{1000}$=$\frac{π}{6}$,即π=3.126,
故選B.

點評 本題考查的知識點是程序框圖,其中根據(jù)已知中的程序流程圖分析出程序的功能,并將問題轉(zhuǎn)化為幾何概型問題是解答本題的關(guān)鍵,本題屬于基本知識的考查.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x)-1,x<0}\\{lo{g}_{a}x(a>0,且a≠1),x>0}\end{array}\right.$的圖象上關(guān)于y軸對稱的點至少有3對,則實數(shù)a的取值范圍是(  )
A.$(0\;,\;\;\frac{{\sqrt{3}}}{3})$B.$(\frac{{\sqrt{5}}}{5}\;,\;\;1)$C.$(\frac{{\sqrt{3}}}{3}\;,\;\;1)$D.$(0\;,\;\;\frac{{\sqrt{5}}}{5})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù) f ( x)=sin x+ex,則 f'(0)的值為(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.計算$\underset{lim}{△x→0}$$\frac{sin(\frac{π}{6}+△x)-sin\frac{π}{6}}{△x}$=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列結(jié)構(gòu)圖中要素之間表示從屬關(guān)系的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=ax3+bx-2,a,b∈R,若f(-2)=-1,則f(2)的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,(a+b)(sinA-sinB)=(c-b)sinC,∠A=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,點P是菱形ABCD所在平面外一點,∠BAD=60°,△PCD是等邊三角形,AB=2,PA=2$\sqrt{2}$,M是PC的中點.
(Ⅰ)求證:PA∥平面BDM;
(Ⅱ)求證:平面PAC⊥平面BDM;
(Ⅲ)求直線BC與平面BDM的所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知三棱錐P-ABC的四個頂點均在某球面上,PC為該球的直徑,△ABC是邊長為4的等邊三角形,三棱錐P-ABC的體積為$\frac{16}{3}$,則該三棱錐的外接球的表面積$\frac{80π}{3}$.

查看答案和解析>>

同步練習冊答案