2.函數(shù)y=2x3-3x2+a的極小值是5,那么實(shí)數(shù)a等于(  )
A.6B.0C.5D.1

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極小值,得到關(guān)于a的方程,解出即可.

解答 解:y′=6x2-6x=6x(x-1),
令y′>0,解得:x>1或x<0,
令y′<0,解得:0<x<1,
故函數(shù)在(-∞,0)遞增,在(0,1)遞減,在(1,+∞)遞增,
故x=1時(shí),y取極小值2-3+a=5,解得:a=6,
故選:A.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\frac{2}{x-lnx-1}$,則y=f(x)的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x是實(shí)數(shù),i是虛數(shù)單位,且(1+xi)(x-i)=-i,則x=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.復(fù)數(shù)z=-i(1+2i)的共軛復(fù)數(shù)為( 。
A.2+iB.2-iC.-2+iD.-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在平面直角坐標(biāo)系xOy中,已知$\overrightarrow{OA}$=(1,0),$\overrightarrow{OB}$=(0,b),b∈R.若$\overrightarrow{OC}$=2$\overrightarrow{OA}$+$\overrightarrow{OB}$,點(diǎn)M滿足$\overrightarrow{OM}$=λ$\overrightarrow{OC}$,(λ∈R),且|$\overrightarrow{OC}$|•|$\overrightarrow{OM}$|=36,則$\overrightarrow{OM}$•$\overrightarrow{OA}$的最大值為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時(shí),求f(x)的極值,并證明f(x)>g(x)+$\frac{1}{2}$,x∈(0,e]恒成立;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值為3?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=x3(x>0)的圖象在點(diǎn)$({{a_k},{a_k}^3})$處的切線與x軸的交點(diǎn)的橫坐標(biāo)為ak+1,其中k∈N*,若a1=27,則a2+a4的值為( 。
A.24B.16C.26D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量$\overrightarrow{m}$=(c+a,b),$\overrightarrow{n}$=(c-a,b-c),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角A的大;
(2)若a=3,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,正方形ABCD所在平面與三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.  
(1)求證:AB⊥平面ADE;
(2)求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案