12.同時(shí)投擲3枚硬幣,那么互為對(duì)立事件的是( 。
A.至少有一個(gè)正面和最多一個(gè)正面B.最多兩個(gè)正面和至少兩個(gè)正面
C.不多于一個(gè)正面和至少兩個(gè)正面D.至少兩個(gè)正面和恰有一個(gè)正面

分析 利用互斥事件、對(duì)立事件的定義直接求解.

解答 解:同時(shí)投擲3枚硬幣,
在A中,至少有一個(gè)正面和最多一個(gè)正面能同時(shí)發(fā)生,不是互斥事件,故A錯(cuò)誤;
在B中,最多兩個(gè)正面和至少兩個(gè)正面能同時(shí)發(fā)生,不是互斥事件,故B錯(cuò)誤;
在C中,不多于一個(gè)正面和至少兩個(gè)正面不能同時(shí)發(fā)生,
也不能同時(shí)不發(fā)生,故C是對(duì)立事件;
在D中,至少兩個(gè)正面和恰有一個(gè)正面不能同時(shí)發(fā)生,
但能同時(shí)不發(fā)生,是互斥但不對(duì)立事件,故D錯(cuò)誤.
故選:C.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意互斥事件、對(duì)立事件的定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在矩形ABCD中,AB=2BC,點(diǎn)M在邊CD上,點(diǎn)F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點(diǎn)D位于D′位置,連接D′B,D′C,得四棱錐D′-ABCM.
(1)求證:平面D′EF⊥平面AMCB;
(2)若∠D′EF=$\frac{π}{3}$,直線(xiàn)D′F與平面ABCM所成角的大小為$\frac{π}{3}$,求幾何體A-D′EF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如果一條直線(xiàn)與一個(gè)平面平行,那么稱(chēng)此直線(xiàn)與平面構(gòu)成一個(gè)“平面線(xiàn)面組”.在一個(gè)長(zhǎng)方體中,由兩個(gè)頂點(diǎn)確定的直線(xiàn)與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“平行線(xiàn)面組”的個(gè)數(shù)是48.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)f(x)在[m,n](m<n)上的值域恰好為[m,n](m<n),則稱(chēng)[m,n]為函數(shù)f(x)的一個(gè)“等值映射區(qū)間”,已知下列函數(shù):(1)y=x2-1;(2)y=2+log2x;(3)y=2x-1;(4)y=$\frac{1}{x-1}$.其中,存在唯一一個(gè)“等值映射區(qū)間”的函數(shù)序號(hào)為(2),(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓$C:\frac{x^2}{4}+\frac{y^2}{3}=1$,直線(xiàn)l:$\left\{\begin{array}{l}x=-3+\sqrt{3}t\\ y=2\sqrt{3}+t\end{array}\right.(t為參數(shù))$.
(1)寫(xiě)出橢圓C的參數(shù)方程及直線(xiàn)l的普通方程;
(2)設(shè)A(1,0),若橢圓C上的點(diǎn)P滿(mǎn)足到點(diǎn)A的距離為$\frac{3}{2}$,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.把數(shù)列依次按第一個(gè)括號(hào)一個(gè)數(shù),第二個(gè)括號(hào)兩個(gè)數(shù),第三個(gè)括號(hào)三個(gè)數(shù),…循環(huán)即為:(3),(5,7),(9,11,13),(15,17,19,21),…則2017在第n個(gè)括號(hào)內(nèi),則n=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.2016年美國(guó)總統(tǒng)大選過(guò)后,有媒體從某公司的全體員工中隨機(jī)抽取了200人,對(duì)他們的投票結(jié)果進(jìn)行了統(tǒng)計(jì)(不考慮棄權(quán)等其他情況),發(fā)現(xiàn)支持希拉里的一共有95人,其中女員工55人,支持特朗普的男員工有60人.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表:據(jù)此材料,是否有95%的把握認(rèn)為投票結(jié)果與性別有關(guān)?
支持希拉里支持特朗普合計(jì)
男員工
女員工
合計(jì)
(Ⅱ)若從該公司的所有男員工中隨機(jī)抽取3人,記其中支持特朗普的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.(用相應(yīng)的頻率估計(jì)概率)
附:
P(K2≥k00.150.100.050.0250.0100.0050.001
K02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=cos(2x+φ),且${∫}_{0}^{\frac{2}{3}π}$f(x)dx=0,則下列說(shuō)法正確的是(  )
A.f(x)的一條對(duì)稱(chēng)軸為x=$\frac{5π}{12}$
B.存在φ使得f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞減
C.f(x)的一個(gè)對(duì)稱(chēng)中心為($\frac{5π}{12}$,0)
D.存在φ使得f(x)在區(qū)間[$\frac{π}{12}$,$\frac{7π}{12}$]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.閱讀下面材料:
根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=B 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$
代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
類(lèi)比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:
cosA-cosB=-2sin$\frac{A+B}{2}$sin$\frac{A-B}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案