分析 (1)直線方程與橢圓方程聯(lián)立,利用判別式為0,橢圓經(jīng)過當(dāng)點(diǎn),聯(lián)立求出m,n即可得到橢圓方程.
(2)設(shè)Q(4,y0),P(x1,y1),又A(-4,0),B(4,0),求出直線AQ的方程為$y=\frac{y_0}{8}(x+4)$.聯(lián)立直線與橢圓方程,利用韋達(dá)定理以及心理的數(shù)量積回家求解即可.
解答 解:(1)直線l:x+$\sqrt{2}y=4\sqrt{2}$代入橢圓C:mx2+ny2=1(n>m>0)可得:(n+2m)y2-16my+32m-1=0,
有且只有一個(gè)公共點(diǎn)$M[{2\sqrt{2},2}]$.△=162m2-4(n+2m)(32m-1)=0,
并且:8m+4n=1,解得m=$\frac{1}{16}$,n=$\frac{1}{8}$.
橢圓C的方程為$\frac{x^2}{16}+\frac{y^2}{8}=1$.
(2)設(shè)Q(4,y0),P(x1,y1),又A(-4,0),B(4,0),∴$\overrightarrow{OP}=({x_1},{y_1}),\overrightarrow{OQ}=(4,{y_0})$.
直線AQ的方程為$y=\frac{y_0}{8}(x+4)$.
∴$\left\{{\begin{array}{l}{\frac{x^2}{16}+\frac{y^2}{8}=1}\\{y=\frac{y_0}{8}(x+4)}\end{array}}\right.⇒(32+{y_0}^2){x^2}+8{y_0}^2•x+16{y_0}^2-32×16=0$.
∴$(-4)+{x_1}=-\frac{{8{y_0}^2}}{{32+{y_0}^2}}⇒{x_1}=4-\frac{{8{y_0}^2}}{{32+{y_0}^2}}$.
$\overrightarrow{OQ}•\overrightarrow{OP}=4{x_1}+{y_0}{y_1}$=$4{x_1}+{y_0}•\frac{y_0}{8}(x+4)$=$4({4-\frac{{8{y_0}^2}}{{32+{y_0}^2}}})+\frac{{{y_0}^2}}{8}({8-\frac{{8{y_0}^2}}{{32+{y_0}^2}}})$
=$16-\frac{{32{y_0}^2}}{{32+{y_0}^2}}+{y_0}^2-\frac{{{y_0}^4}}{{32+{y_0}^2}}=16$.
點(diǎn)評(píng) 本題考查向量與橢圓的關(guān)系,橢圓方程的求法,直線與橢圓的位置關(guān)系的應(yīng)用,考查轉(zhuǎn)化思想設(shè)而不求思想方法的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
B餐廳分?jǐn)?shù)頻數(shù)分布表 | |
分?jǐn)?shù)區(qū)間 | 頻數(shù) |
[0,10) | 2 |
[10,20) | 3 |
[20,30) | 5 |
[30,40) | 15 |
[40,50) | 40 |
[50,60] | 35 |
分?jǐn)?shù) | [0,30) | [30,50) | [50,60] |
滿意度指數(shù) | 0 | 1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45° | B. | 60° | C. | 120° | D. | 135° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 3 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{16}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com