17.若2x=10,則x-log25的值為1.

分析 根據(jù)對數(shù)的定義和對數(shù)的運算性質(zhì)即可求出.

解答 解:2x=10,
則x=log210
則x-log25=log210-log25=log22=1,
故答案為:1

點評 本題考查了對數(shù)的定義和對數(shù)的運算性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.在棱長為1的正方體ABCD-A1B1C1D1中,AC∩BD=O,E是線段B1C(含端點)上的一動點,則
①OE⊥BD1;   
②OE∥面A1C1D;
③三棱錐A1-BDE的體積為定值;
④OE與A1C1所成的最大角為90°.
上述命題中正確的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設a,b≠0,則“a>b”是“$\frac{1}{a}<\frac{1}$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.設xy<0,則$\frac{y}{x}$+$\frac{x}{y}$的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=(2a-1)x-$\frac{1}{2}$cos2x-a(sinx+cosx)在[0,$\frac{π}{2}$]上單調(diào)遞增,則實數(shù)a的取值范圍為( 。
A.(-∞,$\frac{1}{3}$]B.[$\frac{1}{3}$,1]C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在平面直角坐標系xOy中,曲線C的方程為(x-2)2+y2=4,直線l的方程為x+$\sqrt{3}$y-12=0,以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(Ⅰ)分別寫出曲線C與直線l的極坐標方程;
(Ⅱ)在極坐標中,極角為θ(θ∈(0,$\frac{π}{2}$))的射線m與曲線C,直線l分別交于A、B兩點(A異于極點O),求$\frac{|OA|}{|OB|}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)過點$({1\;,\;\frac{3}{2}})$,兩個焦點為F1(-1,0)和F2(1,0).圓O的方程為x2+y2=a2
(1)求橢圓C的標準方程;
(2)過F1且斜率為k(k>0)的動直線l與橢圓C交于A、B兩點,與圓O交于P、Q兩點(點A、P在x軸上方),當|AF2|,|BF2|,|AB|成等差數(shù)列時,求弦PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知直線l:x+$\sqrt{2}y=4\sqrt{2}$與橢圓C:mx2+ny2=1(n>m>0)有且只有一個公共點$M[{2\sqrt{2},2}]$.
(1)求橢圓C的方程;
(2)設橢圓C的左、右頂點分別為A,B,O為坐標原點,動點Q滿足QB⊥AB,連接AQ交橢圓于點P,求$\overrightarrow{OQ}•\overrightarrow{OP}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若命題“?x∈(0,+∞),x+$\frac{1}{x}$≥m”是假命題,則實數(shù)m的取值范圍是(2,+∞).

查看答案和解析>>

同步練習冊答案