分析 (1)利用四邊形AF1BF2是正方形是正方形,列出方程,然后求解離心率.
(2)①由(1)設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{{\frac{1}{2}{a^2}}}=1$,代入$(\sqrt{2},\sqrt{3})$,然后求出橢圓方程.
②設(shè)點(diǎn)P(x0,-8),其中x0≠0設(shè)M(x1,y1),A(0,2),B(0,-2),通過M,B,P三點(diǎn)共線∴$\frac{{{y_1}+2}}{x_1}=-\frac{6}{x_0}$,求出斜率,得到斜率乘積,化簡(jiǎn)推出結(jié)果即可.
解答 解:(1)四邊形AF1BF2是正方形是正方形,∴$b=c=\frac{{\sqrt{2}}}{2}a$,∴$e=\frac{{\sqrt{2}}}{2}$…(4分)
(2)①由(1)設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{{\frac{1}{2}{a^2}}}=1$,代入$(\sqrt{2},\sqrt{3})$,得$C:\frac{2}{a^2}+\frac{6}{a^2}=1$,∴a2=8,
∴橢圓$C:\frac{x^2}{8}+\frac{y^2}{4}=1$.…(8分)
②設(shè)點(diǎn)P(x0,-8),其中x0≠0設(shè)M(x1,y1)A(0,2),B(0,-2),
∵M(jìn),B,P三點(diǎn)共線∴$\frac{{{y_1}+2}}{x_1}=-\frac{6}{x_0}$(*)
又${k_{AM}}=\frac{{{y_1}-2}}{x_1}\;\;\;\;\;{k_{AP}}=-\frac{10}{x_0}$,∴${k_{AM}}{k_{AP}}=\frac{{{y_1}-2}}{x_1}•\;(-\frac{10}{x_0})$,
由(*)可知∴${k_{AM}}{k_{AP}}=\frac{5}{3}\frac{{{y_1}^2-4}}{{{x_1}^2}}$(**),
∵M(jìn)(x1,y1)在橢圓$C:\frac{x^2}{8}+\frac{y^2}{4}=1$上∴${y_1}^2=4(1-\frac{{{x_1}^2}}{8})$,
代入(**)得${k_{AM}}{k_{AP}}=-\frac{5}{6}$為定值.…(14分)
點(diǎn)評(píng) 本題考查橢圓方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,+∞) | B. | (-2,2) | C. | (-∞,-2) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com