1.已知函數(shù)$f(x)=\frac{sinπx}{{({x^2}+1)({x^2}-2x+2)}}$,x∈R.
(Ⅰ)請判斷方程f(x)=0在區(qū)間[-2017,2017]上的根的個數(shù),并說明理由;
(Ⅱ)判斷f(x)的圖象是否具有對稱軸,如果有請寫出一個對稱軸方程,若不具有對稱性,請說明理由;
(Ⅲ)求證:$\sum_{i=2}^n{\frac{{f(\frac{2i-1}{2})}}{{sin\frac{2i-1}{2}π}}}<\frac{2}{5}$.

分析 (I)令f(x)=0,解出f(x)的零點即可.
(II)根據(jù)正弦函數(shù)的對稱性猜想f(x)的對稱軸,再進行驗證即可;
(III)使用裂項法和放縮法化簡.

解答 解:(I)令f(x)=0得sinπx=0,
∴πx=kπ,即x=k,k∈Z.
∵區(qū)間[-2017,2017]上共有2017×2+1=4035個整數(shù),
∴f(x)=0在[-2017,2017]上具有4035個根.
(II)f(x)具有對稱性.
猜想f(x)的對稱軸是直線$x=\frac{1}{2}$,
∵$f(1-x)=\frac{sin(π-πx)}{{[{{(x-1)}^2}+1]({x^2}+1)}}=f(x)$猜想成立.
∴f(x)存在對稱軸$x=\frac{1}{2}$.
(III)$\frac{{f(\frac{2n-1}{2})}}{{sin\frac{2n-1}{2}π}}=\frac{1}{{(\frac{{{{(2n-1)}^2}}}{4}+1)(\frac{{{{(2n-3)}^2}}}{4}+1)}}(n≥2)$=$[{\frac{1}{{\frac{{{{(2n-3)}^2}}}{4}+1}}-\frac{1}{{\frac{{{{(2n-1)}^2}}}{4}+1}}}]•\frac{1}{2n-2}$$≤\frac{1}{2}[{\frac{1}{{\frac{{{{(2n-3)}^2}}}{4}+1}}-\frac{1}{{\frac{{{{(2n-1)}^2}}}{4}+1}}}]$.
∴$\sum_{i=2}^n{\frac{{f(\frac{2i-1}{2})}}{{sin\frac{2i-1}{2}π}}}<\frac{1}{2}({\frac{4}{5}-\frac{4}{13}+\frac{4}{13}-\frac{4}{29}+…+\frac{4}{{{{(2n-3)}^2}+4}}-\frac{4}{{{{(2n-1)}^2}+4}}})$=$\frac{2}{5}-\frac{2}{{{{(2n-1)}^2}+4}}<\frac{2}{5}$.

點評 本題考查了函數(shù)的零點計算,函數(shù)的對稱性,不等式證明,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}的前n項和為Sn,且Sn=2n-an(n∈N*).
(1)求a1,a2,a3,a4的值,并猜想an的表達式;
(2)證明(1)中猜想的an的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x||2x-1|<3},$B=\left\{{\left.x\right|\frac{2x+1}{x-3}<0}\right\}$,則A∩∁RB=( 。
A.$\left\{{\left.x\right|-1<x<\frac{1}{2}或2<x<3}\right\}$B.$(-\frac{1}{2},2)$
C.$\left\{{\left.x\right|-1<x<-\frac{1}{2}}\right\}$D.$(-1,-\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線l1:(3+a)x+4y=5-3a和直線l2:2x+(5+a)y=0平行,則a=-1,-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知各項均為正數(shù)的數(shù)列{an}首項為2,且滿足$a_n^2-{a_n}{a_{n-1}}-n(n+1)a_{n+1}^2=0$,公差不為零的等差數(shù)列{bn}的前n項和為Sn,S5=15,且b1,b3,b9成等比數(shù)列,設(shè)${c_n}=\frac{b_n}{a_n}$
(1)求數(shù)列{an}的通項公式
(2)求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點分別是F1和F2,點A、B分別是橢圓的上、下頂點,四邊形AF1BF2是正方形.
(1)求橢圓C的離心率;
(2)點$(\sqrt{2},\sqrt{3})$是橢圓C上一點.
①求橢圓C的方程;
②若動點P在直線y=-a2上(不在y軸上),直線PB與橢圓交于另一個點M.
證明:直線AM和直線AP的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)平面上,O為原點,M為動點,$|\overrightarrow{OM}|=\sqrt{5},\overrightarrow{ON}=\frac{{2\sqrt{5}}}{5}\overrightarrow{OM}$.過點M作MM1⊥y軸于M1,過N作NN1⊥x軸于點N1,$\overrightarrow{OT}=\overrightarrow{{M_1}M}+\overrightarrow{{N_1}N}$.記點T的軌跡為曲線C,點A(5,0)、B(1,0),過點A作直線l交曲線C于兩個不同的點P、Q(點Q在A與P之間).
(1)求曲線C的方程;  
(2)問是否存在直線l,使得|BP|=|BQ|;若存在,求出直線l方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如果函數(shù)$f(x)={log_3}\frac{3+x}{a-x}$是奇函數(shù),則f(x)的定義域是(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z=i(1-2i)(i為虛數(shù)單位),則z的值為( 。
A.-2+iB.-2-iC.2+iD.2-i

查看答案和解析>>

同步練習(xí)冊答案