【題目】如圖,在三棱錐中,的中點(diǎn).

1)求證:

2)求二面角的平面角的正弦值.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)利用等腰三角形的性質(zhì)得到,由勾股定理逆定理得,由線面垂直的判定定理即可證明;

2)建立空間直角坐標(biāo)系,分別求出面與面的法向量,利用向量的夾角公式計(jì)算法向量夾角,從而可得二面角的平面角的正弦值.

解:(1)連接,設(shè),則

,的中點(diǎn)

,

,的中點(diǎn)

,,

,

,

又∵平面,平面

平面.

2)由(1)知,,,即,,兩兩垂直,

如圖,以為原點(diǎn),以,,所在射線為,,軸正半軸,建立空間直角坐標(biāo)系,

,,,

,.

設(shè)平面的法向量為,

,即,

,則,,

,

,,平面平面,

,

可取向量為平面的法向量,

,

二面角的平面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,PB的中點(diǎn),是等邊三角形,平面平面.

1)求證:平面;

2)求CP與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,平面,分別是,的中點(diǎn).

1)證明:

2)取,若上的動(dòng)點(diǎn),與面所成最大角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的單調(diào)區(qū)間;

2)若的唯一極值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,斜率為1的直線與橢圓交于兩點(diǎn),且,其中為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)過(guò)點(diǎn)且與直線平行的直線與橢圓交于兩點(diǎn),若點(diǎn)滿足,且與橢圓的另一個(gè)交點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x),若關(guān)于x的方程f(x)kx恰有4個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了弘揚(yáng)我國(guó)優(yōu)秀傳統(tǒng)文化,某中學(xué)廣播站在中國(guó)傳統(tǒng)節(jié)日:春節(jié)、元宵節(jié)、清明節(jié)、端午節(jié)、中秋節(jié)這5個(gè)節(jié)日中隨機(jī)選取2個(gè)節(jié)日來(lái)講解其文化內(nèi)涵,則春節(jié)被選中的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求的零點(diǎn)個(gè)數(shù);

2)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市正在進(jìn)行創(chuàng)建全國(guó)文明城市的復(fù)驗(yàn)工作,為了解市民對(duì)“創(chuàng)建全國(guó)文明城市”的知識(shí)知曉程度,某權(quán)威調(diào)查機(jī)構(gòu)對(duì)市民進(jìn)行隨機(jī)調(diào)查,并對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),共分為優(yōu)秀和一般兩類,先從結(jié)果中隨機(jī)抽取100份,統(tǒng)計(jì)得出如下列聯(lián)表:

優(yōu)秀

一般

總計(jì)

25

25

50

30

20

50

總計(jì)

55

45

100

1)根據(jù)上述列聯(lián)表,是否有的把握認(rèn)為“創(chuàng)城知識(shí)的知曉程度是否為優(yōu)秀與性別有關(guān)”?

2)現(xiàn)從調(diào)查結(jié)果為一般的市民中,按分層抽樣的方法從中抽取9人,然后再?gòu)倪@9人中隨機(jī)抽取3人,求這三位市民中男女都有的概率;

3)以樣本估計(jì)總體,視樣本頻率為概率,從全市市民中隨機(jī)抽取10人,用表示這10人中優(yōu)秀的人數(shù),求隨機(jī)變量的期望和方差.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案