分析 先分別以DA,DC,DD1為x軸,y軸,z軸建立空間直角坐標系,則A(2,0,0),A1(2,0,2),E(1,2,0),D(0,0,0),C(0,2,0),F(xiàn)(0,0,1),再寫出向量$\overrightarrow{D{A}_{1}}$,$\overrightarrow{DE}$,的坐標,求出平面A1DE的法向量$\overrightarrow{n}$.
(1)利用向量坐標之間的關(guān)系證得$\overrightarrow{CF}•\overrightarrow{n}=0$,從而得出CF∥平面A1DE.(2)利用法向量,利用向量的夾角公式求二面角A1-DE-A的余弦值.
解答 解:分別以DA,DC,DD1為x軸,y軸,z軸建立空間直角
坐標系,則A(2,0,0),A1(2,0,2),E(1,2,0),
D(0,0,0),C(0,2,0),F(xiàn)(0,0,1),則$\overrightarrow{D{A}_{1}}$=(2,0,2),$\overrightarrow{DE}$=(1,2,0).
設(shè)平面A1DE的法向量是$\overrightarrow{n}=(a,b,c)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=2a+2c=0}\\{\overrightarrow{n}•\overrightarrow{DE}=a+2b=0}\end{array}\right.$,取$\overrightarrow{n}$=(-2,1,2).
(1)由$\overrightarrow{CF}$=(0,-2,1),得$\overrightarrow{CF}•\overrightarrow{n}=0$,從而得出CF∥平面A1DE.
(2)面DEA的一個法向量為$\overrightarrow{m}=(0,0,1)$.
cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{2}{1×3}=\frac{2}{3}$.
∴面角A1-DE-A的余弦值為$\frac{2}{3}$.
點評 本小題主要考查直線與平面平行的判,向量法求二面角,考查運算求解能力,考查空間想象能力.屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{13}$ | B. | -$\frac{1}{13}$ | C. | $\frac{1}{11}$ | D. | -$\frac{1}{11}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[-\frac{1}{e},e]$ | B. | $[-\frac{2}{e},2e]$ | C. | $[-\frac{3}{e},3e]$ | D. | $(-\frac{2}{e},2e)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com