19.在棱長為2的正方體ABCD-A1B1C1D1中,E是BC的中點,F(xiàn)是DD1的中點,
(I)求證:CF∥平面A1DE;
(Ⅱ)求二面角A1-DE-A的余弦值.

分析 先分別以DA,DC,DD1為x軸,y軸,z軸建立空間直角坐標系,則A(2,0,0),A1(2,0,2),E(1,2,0),D(0,0,0),C(0,2,0),F(xiàn)(0,0,1),再寫出向量$\overrightarrow{D{A}_{1}}$,$\overrightarrow{DE}$,的坐標,求出平面A1DE的法向量$\overrightarrow{n}$.
(1)利用向量坐標之間的關(guān)系證得$\overrightarrow{CF}•\overrightarrow{n}=0$,從而得出CF∥平面A1DE.(2)利用法向量,利用向量的夾角公式求二面角A1-DE-A的余弦值.

解答 解:分別以DA,DC,DD1為x軸,y軸,z軸建立空間直角
坐標系,則A(2,0,0),A1(2,0,2),E(1,2,0),
D(0,0,0),C(0,2,0),F(xiàn)(0,0,1),則$\overrightarrow{D{A}_{1}}$=(2,0,2),$\overrightarrow{DE}$=(1,2,0).
設(shè)平面A1DE的法向量是$\overrightarrow{n}=(a,b,c)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{A}_{1}}=2a+2c=0}\\{\overrightarrow{n}•\overrightarrow{DE}=a+2b=0}\end{array}\right.$,取$\overrightarrow{n}$=(-2,1,2).
(1)由$\overrightarrow{CF}$=(0,-2,1),得$\overrightarrow{CF}•\overrightarrow{n}=0$,從而得出CF∥平面A1DE.
(2)面DEA的一個法向量為$\overrightarrow{m}=(0,0,1)$.
cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{2}{1×3}=\frac{2}{3}$.
∴面角A1-DE-A的余弦值為$\frac{2}{3}$.

點評 本小題主要考查直線與平面平行的判,向量法求二面角,考查運算求解能力,考查空間想象能力.屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.我國古代數(shù)學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖所示,在空間直角坐標系xOy平面內(nèi),若函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{1-{x^2}},x∈[{-1,0})\\ cosx,x∈[{0,\frac{π}{2}}]\end{array}$的圖象與x軸圍成一個封閉的區(qū)域A,將區(qū)域A沿z軸的正方向平移4個單位,得到幾何體如圖一,現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域A的面積相等,則此圓柱的體積為π+4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.三棱錐A-BCD中,AB,AC,AD兩兩垂直,其外接球半徑為2,設(shè)三棱錐A-BCD的側(cè)面積為S,則S的最大值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}滿足a1=1,nan-1=(n-1)an(n≥2,n∈N*),數(shù)列{bn}滿足b1=$\frac{1}{2}$,b2=$\frac{1}{4}$,對任意n∈N*都有bn+12=bn+1bn+2
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令Tn=a1b1+a2b2+…+anbn.求證:$\frac{1}{2}≤{T_n}$<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在銳角△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A+$\sqrt{3}$sin(B+C)=1.
(Ⅰ)求角A的大;
(Ⅱ)若△ABC的面積S=10$\sqrt{3}$,c=5,求sinBsinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知數(shù)列{an}滿足:a1=-13,a6+a8=-2,且an-1=2an-an+1(n≥2),則數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前13項和為( 。
A.$\frac{1}{13}$B.-$\frac{1}{13}$C.$\frac{1}{11}$D.-$\frac{1}{11}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系中,已知點F(1,0),直線l:x=-1,動直線l′垂直l于點H,線段HF的垂直平分線交l′于點P,設(shè)點P的軌跡為C.
(1)求曲線C的方程;
(2)以曲線C上的點P(x0,y0)(y0>0)為切點作曲線C的切線l1,設(shè)l1分別與x,y軸交于A,B兩點,且l1恰與以定點M(a,0)(a>2)為圓心的圓相切,當圓M的面積最小時,求△ABF與△PAM面積的比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)$f(x)=kx(x∈[\frac{1}{e},e])$,$g(x)={(\frac{1}{e})^{\frac{x}{2}}}$,若f(x),g(x)圖象上分別存在點M,N,使得M,N關(guān)于直線y=x對稱,則實數(shù)k的取值范圍為( 。
A.$[-\frac{1}{e},e]$B.$[-\frac{2}{e},2e]$C.$[-\frac{3}{e},3e]$D.$(-\frac{2}{e},2e)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知等比數(shù)列{an}中,a1=3,a4=24,
(1)求數(shù)列{an}的通項公式;
(2)設(shè)等差數(shù)列{bn}中,b2=a2,b9=a5,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案