5.已知等差數(shù)列{an}滿足${a_3}=7,{a_5}+{a_7}=26,{b_n}=\frac{1}{{{a_n}^2-1}}(n∈{N^*})$,數(shù)列{bn}的前n項(xiàng)和為Sn,則S100的值為$\frac{25}{101}$.

分析 利用等差數(shù)列的通項(xiàng)公式與“裂項(xiàng)求和”方法即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵a3=7,a5+a7=26,
∴a1+2d=7,2a1+10d=26,
解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
∴bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{4{n}^{2}+4n}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴Sn=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}(1-\frac{1}{n+1})$=$\frac{n}{4(n+1)}$.
∴S100=$\frac{100}{4(100+1)}$=$\frac{25}{101}$
故答案為:$\frac{25}{101}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知a,b,c分別為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,c=2,且sin2A+sin2B=sinAsinB+sin2C,則△ABC面積的最大值為(  )
A.1B.2C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)集合A={m∈Z|m≤-3或m≥2},B={n∈N|-1≤n<3},則B∩(∁ZA)=( 。
A.{0,1,2}B.{-1,0,1}C.{0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.點(diǎn)P是圓(x+3)2+(y-1)2=2上的動(dòng)點(diǎn),點(diǎn)Q(2,2),O為坐標(biāo)原點(diǎn),則△OPQ面積的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow$=(b1,b2),定義一種向量積:$\overrightarrow{a}$?$\overrightarrow$=(a1b1,a2b2),已知$\vec m=(1,\frac{1}{2}),\vec n=(0,1)$,且點(diǎn)P(x,y)在函數(shù)$y=sin\frac{x}{2}$的圖象上運(yùn)動(dòng),點(diǎn)q在函數(shù)y=f(x)的圖象上運(yùn)動(dòng),且點(diǎn)p和點(diǎn)q滿足:$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$(其中O為坐標(biāo)原點(diǎn)),則函數(shù)y=f(x)的最大值A(chǔ)及最小正周期T分別為( 。
A.1,πB.1,4πC.$\frac{3}{2},π$D.$\frac{3}{2},4π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令bn=lna3n+1,n=1,2,…,設(shè)數(shù)列{bn}的前n項(xiàng)和Tn.若$\frac{1}{T_1}+\frac{1}{T_2}+…+\frac{1}{T_n}<λ$對(duì)n∈N*恒成立求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某校1000名學(xué)生中,O型血有400人,A型血有250人,B型血有250人,AB型血有100人,為了研究血型與色弱的關(guān)系,要從中抽取一個(gè)容量為40的樣本,按照分層抽樣的方法抽取樣本,則O型血、A型血、B型血、AB型血的人要分別抽的人數(shù)為( 。
A.16、10、10、4B.14、10、10、6C.13、12、12、3D.15、8、8、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,圓C1和C2的參數(shù)方程分別是$\left\{\begin{array}{l}x=2+2cosϕ\\ y=2sinϕ\end{array}\right.$(ϕ為參數(shù))和$\left\{\begin{array}{l}x=cosβ\\ y=1+sinβ\end{array}\right.$(β為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C1和C2的極坐標(biāo)方程;
(2)射線OM:θ=α與圓C1的交點(diǎn)分別為O、P,與圓C2的交點(diǎn)分別為O、Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x∈R都成立?若存在,求出t;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案