A. | 1 | B. | 2 | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |
分析 利用正余弦定理化簡,求出C角的大小,利用基本不等式求解即可.
解答 解:∵sin2A+sin2B=sinAsinB+sin2C,
由正弦定理可得:a2+b2=ab+c2,
則cosC=$\frac{a^2+b^2-{c}^{2}}{2ab}$=$\frac{1}{2}$,
∴C=$\frac{π}{3}$.
∵c=2,
∴a2+b2=ab+4,
可得ab+4≥2ab,解得ab≤4.(當(dāng)且僅當(dāng)a=b時(shí)取等號)
那么:△ABC面積$S=\frac{1}{2}absinC$$≤\frac{1}{2}×4×sin\frac{π}{3}=\sqrt{3}$.
故選C.
點(diǎn)評 本題考查了正余弦定理化簡計(jì)算能力和基本不等式的運(yùn)用求最值問題.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2-|x| | B. | y=tanx | C. | y=-x3 | D. | $y={log_{\frac{1}{5}}}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,則$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$ | |
B. | 設(shè)命題p:?x>0,x2>2x,則¬p:?x0≤0,x02≤2${\;}^{{x}_{0}}$ | |
C. | △ABC中,A>B是sinA>sinB的充分必要條件 | |
D. | 命題“若a=-1,則f(x)=ax2+2x-1只有一個(gè)零點(diǎn)”的逆命題為真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x<2} | B. | {x|0<x<1} | C. | {x|0≤x<1} | D. | {x|-1<x<0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{7}}}{2}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com