2.已知函數(shù)f(x)=|lnx|,a>b>0,f(a)=f(b),則$\frac{{{a^2}+{b^2}}}{a-b}$的最小值等于2$\sqrt{2}$.

分析 根據(jù)對數(shù)函數(shù)的性質(zhì),求出ab=1,然后利用基本不等式求$\frac{{{a^2}+{b^2}}}{a-b}$的最小值.

解答 解:因為f(x)=|lnx|,f(a)=f(b),所以|lna|=|lnb|,
即lna=±lnb,又a>b>0,所以lna=-lnb,ab=1,
  則$\frac{{{a^2}+{b^2}}}{a-b}$=$\frac{(a-b)^{2}+2ab}{a-b}=(a-b)+\frac{2}{a-b}≥2\sqrt{2}$,
當(dāng)且僅當(dāng)ab=1且a-b=$\frac{2}{a-b}$時取等號,
  ∴$\frac{{{a^2}+{b^2}}}{a-b}$的最小值 為2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點評 本題主要考查基本不等式的應(yīng)用,利用對數(shù)函數(shù)的圖象和性質(zhì)求出ab=1是解決本題的關(guān)鍵,注意基本不等式成立的條件.屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,且Sn=n2+2n,
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{cn}滿足條件:${c_{n+1}}={a_{c_n}}+{2^n}$,又c1=3,是否存在實數(shù)λ,使得數(shù)列$\left\{{\frac{{{c_n}+λ}}{2^n}}\right\}$為等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)的定義域為(0,+∞),f′(x)為f(x)的導(dǎo)函數(shù),且滿足f(x)>-xf′(x),則不等式f(x+1)>(x-1)f(x2-1)的解集是( 。
A.(1,2)B.(1,+∞)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)平面上向量$\overrightarrow a=(cosα,sinα)(0≤α<2π),\overrightarrow b=(-\frac{1}{2},\frac{{\sqrt{3}}}{2}),\overrightarrow a$與$\overrightarrow b$不共線,
(1)證明向量$\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\overrightarrow b$垂直;
(2)當(dāng)兩個向量$\sqrt{3}\overrightarrow a+\overrightarrow b$與$\overrightarrow a-\sqrt{3}\overrightarrow b$的模相等,求角α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知不等式|x-a|+|x+b|≥3的解集為R,則a+b的取值范圍是(-∞,-3]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如果sinα•cosα<0,sinα•tanα>0,那么角$\frac{α}{2}$的終邊在( 。
A.第一或第三象限B.第二或第四象限C.第一或第二象限D.第三或第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在函數(shù):①y=cos|x|②y=|sinx|③$y=cos(2x+\frac{π}{6})$④$y=tan(2x-\frac{π}{4})$中,最小正周期為π的所有函數(shù)為( 。
A.①②③④B.①②③C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)Ox、Oy是平面內(nèi)相交成60°角的兩條數(shù)軸,$\overrightarrow{e_1}$、$\overrightarrow{e_2}$分別是與x軸、y軸正方向同向的單位向量,若$\overrightarrow{OP}=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,則把有序數(shù)對(x,y)叫做向量$\overrightarrow{OP}$在坐標(biāo)系xOy中的坐標(biāo),假設(shè)$\overrightarrow{O{P_1}}=(2,3),\overrightarrow{O{P_2}}=(3,2)$,則$|{\overrightarrow{{P_1}{P_2}}}|$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.利用獨立性檢驗來考慮兩個分類變量X和Y是否有關(guān)系時,如果K2的觀測值k≈4.62,那么在犯錯誤的概率不超過0.05的前提下認(rèn)為“X和Y有關(guān)系”.
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習(xí)冊答案