【題目】如圖,已知四棱錐,是梯形,,,,,.
(Ⅰ)證明:平面平面;
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)取的中點,連接,則,連接,先證明,再證明平面,最后得出結(jié)論;
(Ⅱ)分別延長交于,過作與點,連接,為所求的二面角的平面角,在中,求出結(jié)果即可.
(Ⅰ)證明:取AD的中點O,連接PO,則,連接OC,
在直角梯形ABCD中,易知,,,
所以,
由,,所以,所以,
又,所以平面ABCD,
又PO在平面PAD內(nèi),故平面平面ABCD;
(Ⅱ)如圖,分別延長,交于,過作與點,連接,,
,,,所以,由平面平面ABCD,
所以平面,
結(jié)合(Ⅰ),則為所求的二面角的平面角,,
由,
在三角形PDE中,由,,
所以,則,
故平面與平面所成的銳二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,為中點,側(cè)棱,底面為直角梯形,其中,,平面,、分別是線段、上的動點,且.
(1)求證:平面;
(2)當三棱錐的體積取最大值時,求到平面的距離;
(3)在(2)的條件下求與平面所成角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解某產(chǎn)品的獲利情況,將今年1至7月份的銷售收入(單位:萬元)與純利潤(單位:萬元)的數(shù)據(jù)進行整理后,得到如下表格:
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售收入 | 13 | 13.5 | 13.8 | 14 | 14.2 | 14.5 | 15 |
純利潤 | 3.2 | 3.8 | 4 | 4.2 | 4.5 | 5 | 5.5 |
該公司先從這7組數(shù)據(jù)中選取5組數(shù)據(jù)求純利潤關(guān)于銷售收入的線性回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.假設(shè)選取的是2月至6月的數(shù)據(jù).
(1)求純利潤關(guān)于銷售收入的線性回歸方程(精確到0.01);
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢驗數(shù)據(jù)的誤差均不超過0.1萬元,則認為得到的線性回歸方程是理想的.試問該公司所得線性回歸方程是否理想?
參考公式:,,,;參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的離心率為,長軸的左、右端點分別為,.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于P,Q兩點,直線,交于S,試問:當m變化時,點S是否恒在一條定直線上?若是,請寫出這條直線的方程,并證明你的結(jié)論;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD為正方形,,E,F分別是棱PC,AB的中點.
(1)求證:平面PAD;
(2)若,求直線EF與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知正方形和矩形所在的平面互相垂直,,,是線段的中點.
(1)求證:平面;
(2)若,求二面角的大;
(3)若線段上總存在一點,使得,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com