3.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過(guò)雙曲線右焦點(diǎn)F傾斜角為$\frac{π}{4}$的直線與該雙曲線的漸近線分別交于M、N.若|FM|=2|FN|,則該雙曲線的離心率等于(  )
A.$\frac{\sqrt{10}}{3}$B.$\sqrt{3}$C.$\sqrt{3}$或$\frac{\sqrt{10}}{3}$D.$\frac{\sqrt{10}}{3}$或$\sqrt{10}$

分析 求出雙曲線的漸近線方程,討論b>a>0,可得N為FM的中點(diǎn).當(dāng)a>b>0時(shí),可得$\overrightarrow{FM}$=-2$\overrightarrow{FN}$,求出直線MN的方程,聯(lián)立漸近線方程可得M,N的坐標(biāo),求得b=3a或a=3b,再由離心率公式即可得到所求值.

解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{a}$x,
當(dāng)b>a>0時(shí),如右圖.
若|FM|=2|FN|,可得N為FM的中點(diǎn).
由直線MN:y=x-c,聯(lián)立y=$\frac{a}$x,可得M($\frac{ac}{a-b}$,$\frac{bc}{a-b}$),
由直線MN:y=x-c,聯(lián)立y=-$\frac{a}$x,可得N($\frac{ac}{a+b}$,-$\frac{bc}{a+b}$),
由F(c,0),可得-$\frac{2bc}{a+b}$=$\frac{bc}{a-b}$,
化簡(jiǎn)為b=3a,
即有e=$\frac{c}{a}$=$\sqrt{1+(\frac{a})^{2}}$=$\sqrt{1+9}$=$\sqrt{10}$;
當(dāng)a>b>0時(shí),如右圖.
若|FM|=2|FN|,可得$\overrightarrow{FM}$=-2$\overrightarrow{FN}$,
由直線MN:y=x-c,聯(lián)立y=$\frac{a}$x,可得M($\frac{ac}{a-b}$,$\frac{bc}{a-b}$),
由直線MN:y=x-c,聯(lián)立y=-$\frac{a}$x,可得N($\frac{ac}{a+b}$,-$\frac{bc}{a+b}$),
由F(c,0),可得$\frac{bc}{a-b}$=-2•(-$\frac{bc}{a+b}$),
化簡(jiǎn)為a=3b,
即有e=$\frac{c}{a}$=$\sqrt{1+(\frac{a})^{2}}$=$\sqrt{1+\frac{1}{9}}$=$\frac{\sqrt{10}}{3}$.
則該雙曲線的離心率等于$\frac{\sqrt{10}}{3}$或$\sqrt{10}$.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的漸近線方程,以及分類討論的思想方法,以及向量共線的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知θ∈[0,π),若對(duì)任意的x∈[-1,0].不等式x2cosθ+(x+1)2sinθ+x2+x>0恒成立,則實(shí)數(shù)θ的取值范圍是( 。
A.($\frac{π}{12}$,$\frac{5π}{12}$)B.($\frac{π}{6}$,$\frac{π}{4}$)C.($\frac{π}{4}$,$\frac{3π}{4}$)D.($\frac{π}{6}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知點(diǎn)A,B的坐標(biāo)分別為(-$\sqrt{2}$,0),($\sqrt{2}$,0),直線AM,BM相交于點(diǎn)M,且它們的斜率之積是-$\frac{1}{2}$,點(diǎn)M的軌跡為曲線E.
(Ⅰ)求E的方程;
(Ⅱ)過(guò)點(diǎn)F(1,0)作直線l交曲線E于P,Q兩點(diǎn),交y軸于R點(diǎn),若$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,求證:λ12為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.2017年是某市大力推進(jìn)居民生活垃圾分類的關(guān)鍵一年,有關(guān)部門(mén)為宣傳垃圾分類知識(shí),面向該市市民進(jìn)行了一次“垃圾分類知識(shí)”的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過(guò)抽樣,得到參與問(wèn)卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖所示:

(1)由頻率分布直方圖可以認(rèn)為,此次問(wèn)卷調(diào)查的得分Z服從正態(tài)分布N(μ,210),μ近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P(50.5<Z<94).
(2)在(1)的條件下,有關(guān)部門(mén)為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:
①得分不低于μ可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于μ則只有1次;
②每次贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)概率如下:
贈(zèng)送話費(fèi)(單位:元)1020
概率$\frac{2}{3}$ $\frac{1}{3}$ 
現(xiàn)有一位市民要參加此次問(wèn)卷調(diào)查,記X(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求X的分布列.
附:$\sqrt{210}$≈14.5
若Z~N(μ,δ2),則P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右頂點(diǎn)為A(2,0),左、右焦點(diǎn)分別為F1、F2,過(guò)點(diǎn)A且斜率為$\frac{1}{2}$的直線與y軸交于點(diǎn)P,與橢圓交于另一個(gè)點(diǎn)B,且點(diǎn)B在x軸上的射影恰好為點(diǎn)F1
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)P且斜率大于$\frac{1}{2}$的直線與橢圓交于M,N兩點(diǎn)(|PM|>|PN|),若S△PAM:S△PBN=λ,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知sinα=$\frac{4}{5}$,$\frac{π}{2}$<α<π,則sin2α=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.命題“?x>1,${(\frac{1}{2})^x}<\frac{1}{2}$”的否定是(  )
A.?x>1,${(\frac{1}{2})^x}≥\frac{1}{2}$B.?x≤1,${(\frac{1}{2})^x}≥\frac{1}{2}$C.?x0>1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$D.?x0≤1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)全集U=R,集合A={y|y=x2-2},B={x|y=log2(3-x),則(∁UA)∩B=( 。
A.{x|-2≤x<3}B.{x|x≤-2}C.{x|x<-2}D.{x|x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.定義運(yùn)算“?”:a?b=a+b-$\sqrt{ab}$(a,b為正實(shí)數(shù)).若4?k=3,則函數(shù)f(x)=$\frac{k?x}{{\sqrt{x}}}$的最小值為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案